-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpm_rmq.hpp
227 lines (191 loc) · 8.81 KB
/
pm_rmq.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
/**
* Implements the <O(n), O(1)> ±1 RMQ solution.
*/
#include <algorithm>
#include <cassert>
#include <cmath>
#include <functional>
#include <iterator>
#include <map>
#include <memory>
#include <utility>
#include <vector>
#include <boost/iterator/counting_iterator.hpp>
#include <boost/iterator/zip_iterator.hpp>
#include <boost/tuple/tuple.hpp>
#include "rmq.hpp"
#include "naive_rmq.hpp"
#include "sparse_rmq.hpp"
template<
typename iterator_type,
typename value_type=typename std::iterator_traits<iterator_type>::value_type,
typename difference_type=typename std::iterator_traits<iterator_type>::difference_type
>
class pm_rmq : public rmq<iterator_type, value_type, difference_type> {
// Compilers are dumb.
using rmq<iterator_type, value_type, difference_type>::begin;
using rmq<iterator_type, value_type, difference_type>::end;
using rmq<iterator_type, value_type, difference_type>::n;
using rmq<iterator_type, value_type, difference_type>::val;
/**
* The log_2 of the problem size, lg(n).
*/
const difference_type _logn;
/**
* The block size is lg(n)/2.
*/
const difference_type block_size() const {
return std::max(difference_type(1), _logn / 2);
}
/**
* Arrays of length 2n/lg(n) where the first array contains the minimum
* element in the ith block of the input, and the second contains the
* position of that element (as an offset from the beginning of the
* original input, not from the beginning of the block).
*/
std::vector<value_type> _super_array_vals;
std::vector<difference_type> _super_array_idxs;
/**
* The sparse RMQ implementation over _super_array_vals;
*/
std::unique_ptr<sparse_rmq<typename std::vector<value_type>::const_iterator> > _super_rmq;
/**
* We use a vector<value_type> to represent a normalized block. We
* could use a vector<bool> but that would require building another
* temporary array, this is simpler, if less space efficient.
*
* We keep a map of them while building them to dedupe and to own the
* memory, and an array of them indexed by block number to use at query
* time.
*
* This is the biggest opportunity for optimization. The paper suggests
* keeping a table of all sqrt(n) possible sub blocks. We only keep
* ones that exist in order to simplify handling of the last block
* (which might be shorter). However, our solution involves a bunch of
* copying that makes it slower.
*/
typedef std::vector<value_type> block_identifier;
/**
* We'll use a naive_rmq over block_identifiers to represent the
* precomputed RMQ answers for sub blocks.
*/
typedef naive_rmq<typename std::vector<value_type>::const_iterator> sub_block_rmq;
/**
* The map from block_identifier to the naive_rmq solution on blocks of
* that shape. This map is responsible for the lifetime of each
* naive_rmq, and for ensuring that we only build one naive_rmq for each
* shape of sub block. Once the naive_rmq structures are built, we
* don't really use this map again.
*/
std::map<block_identifier, std::unique_ptr<sub_block_rmq> > _sub_block_rmqs;
/**
* An array mapping sub blocks (by their index) to the naive_rmq
* implementation representing sub blocks of their shape. We need to do
* this lookup at query time so we can't afford to reconstruct the
* block_identifier and query in the map.
*/
std::vector<sub_block_rmq *> _sub_block_rmq_array;
/**
* Normalizes a sub_block so that it starts with 0. Appends results to
* an OutputIterator.
*/
template<
typename OutputIterator
>
static void normalize(iterator_type b, iterator_type e,
OutputIterator o) {
const value_type &init = *b;
std::transform(b, e, o,
[init](const value_type &val) { return val - init; });
}
public:
pm_rmq(iterator_type b, iterator_type e)
: rmq<iterator_type, value_type, difference_type>(b, e),
_logn(std::max(difference_type(1),
difference_type(std::floor(std::log2(n())))))
{
#ifndef NDEBUG
// Check the ±1 property.
std::for_each(boost::make_zip_iterator(boost::make_tuple(b, b + 1)),
boost::make_zip_iterator(boost::make_tuple(e - 1, e)),
[b, e](const boost::tuple<const value_type&, const value_type&>& t) {
auto diff = t.template get<0>() - t.template get<1>();
assert(diff == -1 || diff == 1);
});
#endif
// For each sub_block, we'll add it to the _super_arrays and also
// normalize it and compute its naive_rmq.
for (iterator_type block_begin = begin(); block_begin < end(); block_begin += block_size()) {
const iterator_type block_end = std::min(block_begin + block_size(), end());
// Find the min element of the block by brute force.
const iterator_type block_min = std::min_element(block_begin, block_end);
_super_array_vals.push_back(*block_min);
_super_array_idxs.push_back(block_min - begin());
// Compute the normalized block.
std::vector<value_type> normalized_block(block_end - block_begin);
normalize(block_begin, block_end, normalized_block.begin());
// Find the normalized block in the map of RMQ structures. If not
// found, construct one.
std::unique_ptr<sub_block_rmq> &naive_ptr = _sub_block_rmqs[normalized_block];
if (!naive_ptr) {
naive_ptr.reset(new sub_block_rmq(normalized_block.begin(), normalized_block.end()));
}
// Either way, record a pointer to the RMQ structure at this
// sub_block's index.
_sub_block_rmq_array.push_back(naive_ptr.get());
}
// Construct the RMQ structure over the super array.
_super_rmq.reset(new sparse_rmq<typename std::vector<value_type>::const_iterator>(_super_array_vals.begin(), _super_array_vals.end()));
}
difference_type query(iterator_type u, iterator_type v) const {
// The overall strategy here is straight from the paper. We look up
// the blocks that contain u and v (taking care to consider v being
// the inclusive endpoint even though the API understands it to be
// exclusive), then use a sparse_rmq search over the super array among
// blocks strictly between u's and v's blocks, and do naive_rmq
// searches in the representative structures for the blocks with u's
// and v's blocks' shapes.
//
// Most of what's below is dealing with types and offset math, and
// isn't all that interesting.
const difference_type u_block_idx = difference_type(u - begin()) / block_size();
const difference_type u_offset = difference_type(u - begin()) % block_size();
const difference_type v_block_idx = difference_type(v - 1 - begin()) / block_size();
const difference_type v_offset = difference_type(v - 1 - begin()) % block_size();
const sub_block_rmq &u_naive = *_sub_block_rmq_array[u_block_idx];
const sub_block_rmq &v_naive = *_sub_block_rmq_array[v_block_idx];
const difference_type block_diff = v_block_idx - u_block_idx;
if (block_diff == 0) {
// u and v are in the same block. One naive_rmq search suffices.
return (u_block_idx * block_size()) + u_naive.query_offset(u_offset, v_offset + 1);
} else {
const iterator_type u_block_end = std::min(end(), begin() + ((u_block_idx + 1) * block_size()));
// u and v are in different blocks. First, do naive_rmq searches in
// each block from u to the end of its block, and from the beginning
// of v's block to v. Then also translate these to offsets within
// the original array, because that's what we intend to return.
const difference_type u_min_idx = (u_block_idx * block_size()) +
u_naive.query_offset(u_offset,
u_block_end - (begin() + (block_size() * u_block_idx)));
const difference_type v_min_idx = (v_block_idx * block_size()) +
v_naive.query_offset(0, v_offset + 1);
if (block_diff == 1) {
// u and v are in adjacent blocks. Don't query the super array,
// it doesn't handle zero-length intervals properly.
return val(u_min_idx) < val(v_min_idx) ? u_min_idx : v_min_idx;
} else {
// Full algorithm, using the sparse RMQ implementation on the
// super array between u's and v's blocks.
const difference_type super_idx = _super_rmq->query(_super_array_vals.begin() + u_block_idx + 1,
_super_array_vals.begin() + v_block_idx);
const value_type &u_min_val = val(u_min_idx);
const value_type &v_min_val = val(v_min_idx);
if (u_min_val < v_min_val) {
return u_min_val < _super_array_vals[super_idx] ? u_min_idx : _super_array_idxs[super_idx];
} else {
return v_min_val < _super_array_vals[super_idx] ? v_min_idx : _super_array_idxs[super_idx];
}
}
}
}
};