-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathewah.h
705 lines (620 loc) · 20.8 KB
/
ewah.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
// See LICENSE file for license information.
#ifndef EWAH_H
#define EWAH_H
#include <algorithm>
#include <queue>
#include <vector>
#include "boolarray.h"
#include "ewahutil.h"
#include "runninglengthword.h"
namespace ewah {
template <class uword> class EWAHBoolArrayIterator;
template <class uword> class EWAHBoolArraySetBitForwardIterator;
class BitmapStatistics;
template <class uword> class EWAHBoolArrayRawIterator;
/**
* This class is a compressed bitmap.
* This is where compression
* happens.
* The underlying data structure is an STL vector.
*/
template <class uword = uint32_t> class EWAHBoolArray {
public:
EWAHBoolArray() : buffer(1, 0), sizeinbits(0), lastRLW(0) {}
static EWAHBoolArray bitmapOf(size_t n, ...) {
EWAHBoolArray ans;
va_list vl;
va_start(vl, n);
for (size_t i = 0; i < n; i++) {
ans.set(static_cast<size_t>(va_arg(vl, int)));
}
va_end(vl);
return ans;
}
/**
* Recover wasted memory usage. Fit buffers to the actual data.
*/
void trim() { buffer.shrink_to_fit(); }
/**
* Query the value of bit i. This runs in time proportional to
* the size of the bitmap. This is not meant to be use in
* a performance-sensitive context.
*
* (This implementation is based on zhenjl's Go version of JavaEWAH.)
*
*/
bool get(const size_t pos) const {
if (pos >= static_cast<size_t>(sizeinbits))
return false;
const size_t wordpos = pos / wordinbits;
size_t WordChecked = 0;
EWAHBoolArrayRawIterator<uword> j = raw_iterator();
while (j.hasNext()) {
BufferedRunningLengthWord<uword> &rle = j.next();
WordChecked += static_cast<size_t>(rle.getRunningLength());
if (wordpos < WordChecked)
return rle.getRunningBit();
if (wordpos < WordChecked + rle.getNumberOfLiteralWords()) {
const uword w = j.dirtyWords()[wordpos - WordChecked];
return (w & (static_cast<uword>(1) << (pos % wordinbits))) != 0;
}
WordChecked += static_cast<size_t>(rle.getNumberOfLiteralWords());
}
return false;
}
/**
* Returns true if no bit is set.
*/
bool empty() const {
size_t pointer(0);
while (pointer < buffer.size()) {
ConstRunningLengthWord<uword> rlw(buffer[pointer]);
if (rlw.getRunningBit()) {
if (rlw.getRunningLength() > 0)
return false;
}
++pointer;
for (size_t k = 0; k < rlw.getNumberOfLiteralWords(); ++k) {
if (buffer[pointer] != 0)
return false;
++pointer;
}
}
return true;
}
/**
* Set the ith bit to true (starting at zero).
* Auto-expands the bitmap. It has constant running time complexity.
* Note that you must set the bits in increasing order:
* set(1), set(2) is ok; set(2), set(1) is not ok.
* set(100), set(100) is also not ok.
*
* Note: by design EWAH is not an updatable data structure in
* the sense that once bit 1000 is set, you cannot change the value
* of bits 0 to 1000.
*
* Returns true if the value of the bit was changed, and false otherwise.
* (In practice, if you set the bits in strictly increasing order, it
* should always return true.)
*/
bool set(size_t i);
/**
* Transform into a string that presents a list of set bits.
* The running time is linear in the compressed size of the bitmap.
*/
operator std::string() const {
std::stringstream ss;
ss << *this;
return ss.str();
}
friend std::ostream &operator<<(std::ostream &out, const EWAHBoolArray &a) {
out << "{";
for (EWAHBoolArray::const_iterator i = a.begin(); i != a.end();) {
out << *i;
++i;
if (i != a.end())
out << ",";
}
out << "}";
return out;
}
/**
* Make sure the two bitmaps have the same size (padding with zeroes
* if necessary). It has constant running time complexity.
*
* This is useful when calling "logicalnot" functions.
*
* This can an adverse effect of performance, especially when computing
* intersections.
*/
void makeSameSize(EWAHBoolArray &a) {
if (a.sizeinbits < sizeinbits)
a.padWithZeroes(sizeinbits);
else if (sizeinbits < a.sizeinbits)
padWithZeroes(a.sizeinbits);
}
enum { RESERVEMEMORY = true }; // for speed
typedef EWAHBoolArraySetBitForwardIterator<uword> const_iterator;
/**
* Returns an iterator that can be used to access the position of the
* set bits. The running time complexity of a full scan is proportional to the
* number
* of set bits: be aware that if you have long strings of 1s, this can be
* very inefficient.
*
* It can be much faster to use the toArray method if you want to
* retrieve the set bits.
*/
const_iterator begin() const {
return EWAHBoolArraySetBitForwardIterator<uword>(&buffer);
}
/**
* Basically a bogus iterator that can be used together with begin()
* for constructions such as for(EWAHBoolArray<uword>::iterator i = b.begin();
* i!=b.end(); ++i) {}
*/
const_iterator &end() const {
return EWAHBoolArraySetBitForwardIterator<uword>::end();
}
/**
* Retrieve the set bits. Can be much faster than iterating through
* the set bits with an iterator.
*/
std::vector<size_t> toArray() const;
/**
* computes the logical and with another compressed bitmap
* answer goes into container
* Running time complexity is proportional to the sum of the compressed
* bitmap sizes.
*
* The sizeInBits() of the result is equal to the maximum that of the current
* bitmap's sizeInBits() and that of a.sizeInBits().
*/
void logicaland(const EWAHBoolArray &a, EWAHBoolArray &container) const;
/**
* computes the logical and with another compressed bitmap
* Return the answer
* Running time complexity is proportional to the sum of the compressed
* bitmap sizes.
*
* The sizeInBits() of the result is equal to the maximum that of the current
* bitmap's sizeInBits() and that of a.sizeInBits().
*/
EWAHBoolArray logicaland(const EWAHBoolArray &a) const {
EWAHBoolArray answer;
logicaland(a, answer);
return answer;
}
/**
* calls logicaland
*/
EWAHBoolArray operator&(const EWAHBoolArray &a) const {
return logicaland(a);
}
/**
* computes the logical and with another compressed bitmap
* answer goes into container
* Running time complexity is proportional to the sum of the compressed
* bitmap sizes.
*
* The sizeInBits() of the result should be equal to that of the current
* bitmap irrespective of a.sizeInBits().
*
*/
void logicalandnot(const EWAHBoolArray &a, EWAHBoolArray &container) const;
/**
* calls logicalandnot
*/
EWAHBoolArray operator-(const EWAHBoolArray &a) const {
return logicalandnot(a);
}
/**
* computes the logical and not with another compressed bitmap
* Return the answer
* Running time complexity is proportional to the sum of the compressed
* bitmap sizes.
*
* The sizeInBits() of the result should be equal to that of the current
* bitmap irrespective of a.sizeInBits().
*
*/
EWAHBoolArray logicalandnot(const EWAHBoolArray &a) const {
EWAHBoolArray answer;
logicalandnot(a, answer);
return answer;
}
/**
* tests whether the bitmaps "intersect" (have at least one 1-bit at the same
* position). This function does not modify the existing bitmaps.
* It is faster than calling logicaland.
*/
bool intersects(const EWAHBoolArray &a) const;
/**
* computes the logical or with another compressed bitmap
* answer goes into container
* Running time complexity is proportional to the sum of the compressed
* bitmap sizes.
*
* If you have many bitmaps, see fast_logicalor_tocontainer.
*
* The sizeInBits() of the result is equal to the maximum that of the current
* bitmap's sizeInBits() and that of a.sizeInBits().
*/
void logicalor(const EWAHBoolArray &a, EWAHBoolArray &container) const;
/**
* computes the size (in number of set bits) of the logical or with another
* compressed bitmap
* Running time complexity is proportional to the sum of the compressed
* bitmap sizes.
*/
size_t logicalorcount(const EWAHBoolArray &a) const;
/**
* computes the size (in number of set bits) of the logical and with another
* compressed bitmap
* Running time complexity is proportional to the sum of the compressed
* bitmap sizes.
*/
size_t logicalandcount(const EWAHBoolArray &a) const;
/**
* computes the size (in number of set bits) of the logical and not with
* another compressed bitmap
* Running time complexity is proportional to the sum of the compressed
* bitmap sizes.
*/
size_t logicalandnotcount(const EWAHBoolArray &a) const;
/**
* computes the size (in number of set bits) of the logical xor with another
* compressed bitmap
* Running time complexity is proportional to the sum of the compressed
* bitmap sizes.
*/
size_t logicalxorcount(const EWAHBoolArray &a) const;
/**
* computes the logical or with another compressed bitmap
* Return the answer
* Running time complexity is proportional to the sum of the compressed
* bitmap sizes.
*
* If you have many bitmaps, see fast_logicalor.
*
* The sizeInBits() of the result is equal to the maximum that of the current
* bitmap's sizeInBits() and that of a.sizeInBits().
*/
EWAHBoolArray logicalor(const EWAHBoolArray &a) const {
EWAHBoolArray answer;
logicalor(a, answer);
return answer;
}
/**
* calls logicalor
*/
EWAHBoolArray operator|(const EWAHBoolArray &a) const { return logicalor(a); }
/**
* computes the logical xor with another compressed bitmap
* answer goes into container
* Running time complexity is proportional to the sum of the compressed
* bitmap sizes.
*
* The sizeInBits() of the result is equal to the maximum that of the current
* bitmap's sizeInBits() and that of a.sizeInBits().
*/
void logicalxor(const EWAHBoolArray &a, EWAHBoolArray &container) const;
/**
* computes the logical xor with another compressed bitmap
* Return the answer
* Running time complexity is proportional to the sum of the compressed
* bitmap sizes.
*
* The sizeInBits() of the result is equal to the maximum that of the current
* bitmap's sizeInBits() and that of a.sizeInBits().
*/
EWAHBoolArray logicalxor(const EWAHBoolArray &a) const {
EWAHBoolArray answer;
logicalxor(a, answer);
return answer;
}
/**
* calls logicalxor
*/
EWAHBoolArray operator^(const EWAHBoolArray &a) const {
return logicalxor(a);
}
/**
* clear the content of the bitmap. It does not
* release the memory.
*/
void reset() {
buffer.clear();
buffer.push_back(0);
sizeinbits = 0;
lastRLW = 0;
}
/**
* convenience method.
*
* returns the number of words added (storage cost increase)
*/
inline size_t addWord(const uword newdata,
const uint32_t bitsthatmatter = 8 * sizeof(uword));
inline void printout(std::ostream &o = std::cout) {
toBoolArray().printout(o);
}
/**
* Prints a verbose description of the content of the compressed bitmap.
*/
void debugprintout() const;
/**
* Return the size in bits of this bitmap (this refers
* to the uncompressed size in bits).
*
* You can increase it with padWithZeroes()
*/
inline size_t sizeInBits() const { return sizeinbits; }
/**
* Return the size of the buffer in bytes. This
* is equivalent to the storage cost, minus some overhead.
* See sizeOnDisk to get the actual storage cost with overhead.
*/
inline size_t sizeInBytes() const { return buffer.size() * sizeof(uword); }
/**
* same as addEmptyWord, but you can do several in one shot!
* returns the number of words added (storage cost increase)
*/
size_t addStreamOfEmptyWords(const bool v, size_t number);
/**
* add a stream of dirty words, returns the number of words added
* (storage cost increase)
*/
size_t addStreamOfDirtyWords(const uword *v, const size_t number);
/**
* add a stream of dirty words, each one negated, returns the number of words
* added
* (storage cost increase)
*/
size_t addStreamOfNegatedDirtyWords(const uword *v, const size_t number);
/**
* make sure the size of the array is totalbits bits by padding with zeroes.
* returns the number of words added (storage cost increase).
*
* This is useful when calling "logicalnot" functions.
*
* This can an adverse effect of performance, especially when computing
* intersections.
*
*/
size_t padWithZeroes(const size_t totalbits);
/**
* Compute the size on disk assuming that it was saved using
* the method "write".
*/
size_t sizeOnDisk(const bool savesizeinbits = true) const;
/**
* Save this bitmap to a stream. The file format is
* | sizeinbits | buffer lenth | buffer content|
* the sizeinbits part can be omitted if "savesizeinbits=false".
* Both sizeinbits and buffer length are saved using the uint64_t data
* type.
* Returns how many bytes were handed out to the stream.
*/
size_t write(std::ostream &out, const bool savesizeinbits = true) const;
/**
* same as write(std::ostream...), except that you provide a char pointer
* and a "capacity" (in bytes). The function never writes at or beyond
* "out+capacity". If the storage needed exceeds the given capacity, the value
* zero is returned: it should be considered an error. Otherwise, the number
* of bytes copied is returned.
*/
size_t write(char *out, size_t capacity,
const bool savesizeinbits = true) const;
/**
* This only writes the content of the buffer (see write()) method.
* It is for advanced users.
*/
void writeBuffer(std::ostream &out) const;
/**
* size (in words) of the underlying STL vector.
*/
size_t bufferSize() const { return buffer.size(); }
/**
* this is the counterpart to the write method.
* if you set savesizeinbits=false, then you are responsible
* for setting the value fo the attribute sizeinbits (see method
* setSizeInBits).
*
* Returns how many bytes were queried from the stream.
*/
size_t read(std::istream &in, const bool savesizeinbits = true);
/**
* same as read(std::istream...), except that you provide a char pointer
* and a "capacity" (in bytes). The function never reads at or beyond
* "in+capacity". If the detected storage exceeds the given capacity, the
* value zero is returned: it should be considered an error. Otherwise, the
* number of bytes read is returned.
*/
size_t read(const char *in, size_t capacity,
const bool savesizeinbits = true);
/**
* read the buffer from a stream, see method writeBuffer.
* this is for advanced users.
*/
void readBuffer(std::istream &in, const size_t buffersize);
/**
* We define two EWAHBoolArray as being equal if they have the same set bits.
* Alternatively, B1==B2 if and only if cardinality(B1 XOR B2) ==0.
*/
bool operator==(const EWAHBoolArray &x) const;
/**
* We define two EWAHBoolArray as being different if they do not have the same
* set bits.
* Alternatively, B1!=B2 if and only if cardinality(B1 XOR B2) >0.
*/
bool operator!=(const EWAHBoolArray &x) const;
bool operator==(const BoolArray<uword> &x) const;
bool operator!=(const BoolArray<uword> &x) const;
/**
* Iterate over the uncompressed words.
* Can be considerably faster than begin()/end().
* Running time complexity of a full scan is proportional to the
* uncompressed size of the bitmap.
*/
EWAHBoolArrayIterator<uword> uncompress() const;
/**
* To iterate over the compressed data.
* Can be faster than any other iterator.
* Running time complexity of a full scan is proportional to the
* compressed size of the bitmap.
*/
EWAHBoolArrayRawIterator<uword> raw_iterator() const;
/**
* Appends the content of some other compressed bitmap
* at the end of the current bitmap.
*/
void append(const EWAHBoolArray &x);
/**
* For research purposes. This computes the number of
* dirty words and the number of compressed words.
*/
BitmapStatistics computeStatistics() const;
/**
* For convenience, this fully uncompresses the bitmap.
* Not fast!
*/
BoolArray<uword> toBoolArray() const;
/**
* Convert to a list of positions of "set" bits.
* The recommended container is vector<size_t>.
*
* See also toArray().
*/
template <class container>
void appendSetBits(container &out, const size_t offset = 0) const;
/**
* Returns a vector containing the position of the set
* bits in increasing order. This just calls "toArray".
*/
std::vector<size_t> toVector() const { return toArray(); }
/**
* Returns the number of bits set to the value 1.
* The running time complexity is proportional to the
* compressed size of the bitmap.
*
* This is sometimes called the cardinality.
*/
size_t numberOfOnes() const;
/**
* Swap the content of this bitmap with another bitmap.
* No copying is done. (Running time complexity is constant.)
*/
void swap(EWAHBoolArray &x);
const std::vector<uword> &getBuffer() const { return buffer; }
enum { wordinbits = sizeof(uword) * 8 };
/**
* Please don't copy your bitmaps! The running time
* complexity of a copy is the size of the compressed bitmap.
**/
EWAHBoolArray(const EWAHBoolArray &other)
: buffer(other.buffer), sizeinbits(other.sizeinbits),
lastRLW(other.lastRLW) {}
/**
* Copies the content of one bitmap onto another. Running time complexity
* is proportional to the size of the compressed bitmap.
* please, never hard-copy this object. Use the swap method if you must.
*/
EWAHBoolArray &operator=(const EWAHBoolArray &x) {
buffer = x.buffer;
sizeinbits = x.sizeinbits;
lastRLW = x.lastRLW;
return *this;
}
/**
* Move constructor.
*/
EWAHBoolArray(EWAHBoolArray &&other)
: buffer(std::move(other.buffer)), sizeinbits(other.sizeinbits),
lastRLW(other.lastRLW) {}
/**
* Move assignment operator.
*/
EWAHBoolArray &operator=(EWAHBoolArray &&x) {
buffer = std::move(x.buffer);
sizeinbits = x.sizeinbits;
lastRLW = x.lastRLW;
return *this;
}
/**
* This is equivalent to the operator =. It is used
* to keep in mind that assignment can be expensive.
*
*if you don't care to copy the bitmap (performance-wise), use this!
*/
void expensive_copy(const EWAHBoolArray &x) {
buffer = x.buffer;
sizeinbits = x.sizeinbits;
lastRLW = x.lastRLW;
}
/**
* Write the logical not of this bitmap in the provided container.
*
* This function takes into account the sizeInBits value.
* You may need to call "padWithZeroes" to adjust the sizeInBits.
*/
void logicalnot(EWAHBoolArray &x) const;
/**
* Write the logical not of this bitmap in the provided container.
*
* This function takes into account the sizeInBits value.
* You may need to call "padWithZeroes" to adjust the sizeInBits.
*/
EWAHBoolArray<uword> logicalnot() const {
EWAHBoolArray answer;
logicalnot(answer);
return answer;
}
/**
* Apply the logical not operation on this bitmap.
* Running time complexity is proportional to the compressed size of the
*bitmap.
* The current bitmap is not modified.
*
* This function takes into account the sizeInBits value.
* You may need to call "padWithZeroes" to adjust the sizeInBits.
**/
void inplace_logicalnot();
/**
* set size in bits. This does not affect the compressed size. It
* runs in constant time. This should not normally be used, except
* as part of a deserialization process.
*/
inline void setSizeInBits(const size_t size) { sizeinbits = size; }
/**
* Like addStreamOfEmptyWords but
* addStreamOfEmptyWords but does not return the cost increase,
* does not update sizeinbits
*/
inline void fastaddStreamOfEmptyWords(const bool v, size_t number);
/**
* LikeaddStreamOfDirtyWords but does not return the cost increse,
* does not update sizeinbits.
*/
inline void fastaddStreamOfDirtyWords(const uword *v, const size_t number);
private:
void assertWordCount(std::string message) const;
void correctWordCount();
size_t numberOfWords() const;
// private because does not increment the size in bits
// returns the number of words added (storage cost increase)
inline size_t addLiteralWord(const uword newdata);
// private because does not increment the size in bits
// returns the number of words added (storage cost increase)
size_t addEmptyWord(const bool v);
// this second version "might" be faster if you hate OOP.
// in my tests, it turned out to be slower!
// private because does not increment the size in bits
// inline void addEmptyWordStaticCalls(bool v);
std::vector<uword> buffer;
size_t sizeinbits;
size_t lastRLW;
};
} // namespace ewah
#include "ewah-inl.h"
#endif