-
Notifications
You must be signed in to change notification settings - Fork 12
/
vis.py
486 lines (430 loc) · 18.5 KB
/
vis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
import json
import numpy as np
import matplotlib.pyplot as plt
from collections import defaultdict
import seaborn as sns
from matplotlib.backends.backend_pdf import PdfPages
import matplotlib.ticker as ticker
from collections import Counter
import re
from utils import load_data, Stats
# 导入数据
data_path = 'dataset/raw/corpus.json'
# data_path = 'dataset/train.json'
# data_path = 'dataset/test.json'
data = load_data(data_path)
# 可视化参数设置
font_scale = 1.8
from collections import defaultdict
# 实体总数量
entity_set = defaultdict(set)
b_prefixs = ['B-Symptom', 'B-Medical_Examination', 'B-Drug', 'B-Drug_Category', 'B-Operation']
i_prefixs = ['I-Symptom', 'I-Medical_Examination', 'I-Drug', 'I-Drug_Category', 'I-Operation']
for _, value in data.items():
for item in value['dialogue']:
bio_labels = [_.strip() for _ in item['BIO_label'].split(' ')]
n = len(bio_labels)
for b_prefix, i_prefix in zip(b_prefixs, i_prefixs):
start_idx, end_idx = 0, 0
while start_idx < n and end_idx < n:
while start_idx < n and not bio_labels[start_idx].startswith(b_prefix):
start_idx += 1
end_idx = start_idx + 1
while end_idx < n and bio_labels[end_idx].startswith(i_prefix):
end_idx += 1
# 将标注的实体添加到集合中
entity_set[b_prefix].add(item['sentence'][start_idx: end_idx])
start_idx = end_idx
a = {key: len(value) for key, value in entity_set.items()}
aa = set()
for key, val in data.items():
for w in val['self_report']:
aa.add(w)
for sent in val['dialogue']:
for w in sent['sentence']:
aa.add(w)
for w in val['report'][0]:
aa.add(w)
for w in val['report'][1]:
aa.add(w)
# 基本数据统计
stats = Stats(samples=data)
stats.num_samples()
stats.dis_stats()
stats.sx_stats()
# ----------------------------------------------------------------------------------------------------------------------
# 话语和词分布
num_utterances = np.array([len(value['dialogue']) for _, value in data.items()])
num_words = np.array([sum([len(item['sentence']) for item in value['dialogue']]) for _, value in data.items()])
with PdfPages('utter_dist.pdf') as pdf:
plt.clf()
_, ax = plt.subplots()
sns.set_context('paper', font_scale=font_scale)
ax.hist(x=num_utterances, bins=25, color='#607c8e', alpha=0.7, rwidth=0.85)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_color('#DDDDDD')
ax.spines['bottom'].set_color('#DDDDDD')
plt.xlabel('Number of utterances')
plt.ylabel('Frequency')
plt.grid(True, color="grey", linewidth="1.0", linestyle="-.", axis='y', alpha=0.2)
plt.tight_layout()
# plt.show()
pdf.savefig()
with PdfPages('words_dist.pdf') as pdf:
plt.clf()
sns.set_context('paper', font_scale=font_scale)
_, ax = plt.subplots()
ax.hist(x=num_words, bins=25, color='#607c8e', alpha=0.7, rwidth=0.85)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_color('#DDDDDD')
ax.spines['bottom'].set_color('#DDDDDD')
plt.xlabel('Number of Words')
plt.ylabel('Frequency')
plt.grid(True, color="grey", linewidth="1.0", linestyle="-.", axis='y', alpha=0.2)
plt.tight_layout()
# plt.show()
pdf.savefig()
# ----------------------------------------------------------------------------------------------------------------------
# 疾病分布
dis_types = Counter([value['diagnosis'] for _, value in data.items()])
print(dis_types)
with PdfPages('dis_dist.pdf') as pdf:
# 定义字体大小
sns.set_context('paper', font_scale=font_scale)
group_names = ['小儿支气管炎', '小儿发热', '小儿腹泻', '上呼吸道感染', '小儿消化不良',
'小儿感冒', '小儿咳嗽', '新生儿黄疸', '小儿便秘', '小儿支气管肺炎']
# URI is short for Upper Respiratory Infection
# BPN is short for Bronchopneumonia
group_names_en = ['Bronchitis', 'Fever', 'Diarrhea', 'URI', 'Dyspepsia',
'Cold', 'Cough', 'Jaundice', 'Constipation', 'BPN']
group_names_en.reverse()
group_size = [543, 542, 534, 486, 475, 472, 344, 294, 221, 205]
group_size.reverse()
group_size_ratio = np.array(group_size) / np.sum(group_size)
_, ax = plt.subplots()
width = 0.6
ax.barh(group_names_en, group_size, width, color='#607c8e', alpha=0.7)
ax.set_xlabel('Frequency')
ax.xaxis.set_label_position('top')
plt.xlim(0, 700)
# 显示数字百分比
for i, p in enumerate(ax.patches[-len(group_names):]):
x, y = p.get_xy()
ax.annotate('{:.1%}'.format(group_size_ratio[i]), (group_size[i] + 10, y))
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_color('#DDDDDD')
ax.spines['bottom'].set_color('#DDDDDD')
plt.grid(True, color="grey", linewidth="1.0", linestyle="-.", axis='x', alpha=0.2)
plt.tight_layout()
# plt.show()
pdf.savefig()
# ----------------------------------------------------------------------------------------------------------------------
# 实体类型分布
entity_types = defaultdict(int)
for key, value in data.items():
for item in value['dialogue']:
for et in item['BIO_label'].split(' '):
if et.strip().startswith('B'):
if item['speaker'] == '医生':
entity_types['d_' + et.strip()] += 1
else:
entity_types['p_' + et.strip()] += 1
print(entity_types)
with PdfPages('et_dist.pdf') as pdf:
plt.clf()
# 数据
group_names = ['Symptom', 'Examination', 'Drug Name', 'Drug Category', 'Operation']
# group_names = ['SX', 'EX', 'DN', 'DC', 'OP']
group_size = [62802, 18223, 12435, 9990, 4282]
# 定义字体大小
sns.set_context('paper', font_scale=font_scale)
fig, ax = plt.subplots()
ax.axis('equal')
colors = [plt.cm.Reds, plt.cm.Blues, plt.cm.Purples, plt.cm.Greens, plt.cm.Oranges]
pie, _, _ = ax.pie(group_size, labels=group_names, autopct='%1.1f%%',
colors=[color(0.5) for color in colors],
radius=1.3, pctdistance=0.6, labeldistance=1.06, startangle=-30)
# plt.tight_layout()
plt.legend(loc=(-0.15, 0.70))
# plt.show()
pdf.savefig()
# ----------------------------------------------------------------------------------------------------------------------
# 实体位置分布计算
split = 5
entity_pos = np.zeros((5, split))
entity_list = ['B-Symptom', 'B-Medical_Examination', 'B-Drug', 'B-Drug_Category', 'B-Operation']
for key, value in data.items():
_num = len(value['dialogue'])
for i, item in enumerate(value['dialogue']):
for et in item['BIO_label'].split(' '):
if et.strip().startswith('B'):
entity_pos[entity_list.index(et.strip())][int(i // (_num / split))] += 1
# 按列归一化
entity_prop = entity_pos / entity_pos.sum(axis=1).reshape(-1, 1)
with PdfPages('et_pos.pdf') as pdf:
plt.clf()
sns.set_context('paper', font_scale=font_scale)
cmap = sns.color_palette("Spectral", as_cmap=True)
x_label = ['0%-20%', '20%-40%', '40%-60%', '60%-80%', '80%-100%']
y_label = ['Symptom', 'Examination', 'Drug', 'Drug Category', 'Operation']
ax = sns.heatmap(entity_prop, center=0.8, square=False, linewidths=0.1,
cbar_kws={"shrink": 1.0}, xticklabels=x_label, yticklabels=y_label)
ax.xaxis.tick_top()
plt.xticks(rotation=20)
plt.tight_layout()
# plt.show()
pdf.savefig()
# ----------------------------------------------------------------------------------------------------------------------
# 对话行为统计
action_types = defaultdict(int)
for key, value in data.items():
for item in value['dialogue']:
if item['speaker'] == '医生':
action_types['D_' + item['dialogue_act']] += 1
else:
action_types['P_' + item['dialogue_act']] += 1
print(action_types)
with PdfPages('da_dist.pdf') as pdf:
plt.clf()
# 简写详情
# Physical Characteristic(PC); Symptom (SX); Etiology (ETIOL); Existing Examination and Treatment (EET);
# Make Diagnose (MD); Drug Recommendation (DR); Medical Advice (MA); Precautions (PRCTN)
# 定义标签名称
group_names = ['R-ETIOL', 'R-PRCTN', 'R-MA', 'I-ETIOL', 'DIAG', 'R-BI', 'R-DR', 'I-MA', 'R-EET', 'I-BI',
'I-PRCTN', 'I-EET', 'I-DR', 'R-SX', 'I-SX']
group_size = [1504, 1630, 2017, 2533, 3744, 5054, 5642, 6247, 6567, 7974, 8282, 9878, 11196, 14848, 21830]
doctor_group_size = [157, 4, 18, 2395, 3701, 5032, 31, 6230, 6529, 34, 8243, 38, 11149, 14741, 251]
patient_group_size = [1347, 1626, 1999, 138, 43, 22, 5611, 17, 38, 7940, 39, 9840, 47, 107, 21579]
group_size_ratio = np.array(group_size) / np.sum(group_size)
# 定义字体大小
sns.set_context('paper', font_scale=font_scale)
_, ax = plt.subplots()
width = 0.65
ax.barh(group_names, doctor_group_size, width,
label='Doctor', edgecolor='black', color='cornflowerblue')
ax.barh(group_names, patient_group_size, width, left=doctor_group_size,
label='Patient', edgecolor='black', color='sandybrown')
ax.set_xlabel('Frequency')
ax.xaxis.set_label_position('top')
# 显示数字百分比
for i, p in enumerate(ax.patches[-len(group_names):]):
x, y = p.get_xy()
ax.annotate('{:.1%}'.format(group_size_ratio[i]), (group_size[i] + 200, y), size=14)
# 淡化坐标轴框线
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_color('#DDDDDD')
ax.spines['bottom'].set_color('#DDDDDD')
# 横坐标简化表示
ax.xaxis.set_major_formatter(ticker.FuncFormatter(lambda v, pos: '{:,.0f}'.format(v / 1000) + 'K'))
plt.grid(True, color="grey", linewidth="1.0", linestyle="-.", axis='x', alpha=0.2)
plt.legend()
plt.tight_layout()
# plt.show()
pdf.savefig()
# ----------------------------------------------------------------------------------------------------------------------
# 对话行为位置分布计算
split = 5
action_list = [
'Request-Basic_Information', 'Inform-Basic_Information', 'Request-Symptom', 'Inform-Symptom', 'Request-Etiology',
'Inform-Etiology', 'Request-Existing_Examination_and_Treatment', 'Inform-Existing_Examination_and_Treatment',
'Diagnose', 'Request-Drug_Recommendation', 'Inform-Drug_Recommendation', 'Request-Medical_Advice',
'Inform-Medical_Advice', 'Request-Precautions', 'Inform-Precautions']
action_pos = np.zeros((len(action_list), split))
for key, value in data.items():
_num = len(value['dialogue'])
for i, item in enumerate(value['dialogue']):
if item['dialogue_act'] in action_list:
action_pos[action_list.index(item['dialogue_act'])][int(i // (_num / split))] += 1
# 按列归一化
action_prop = action_pos / action_pos.sum(axis=1).reshape(-1, 1)
# 对话行为位置热图统计
# 观察:
with PdfPages('da_pos.pdf') as pdf:
plt.clf()
# 设置字体
sns.set_context('paper', font_scale=font_scale)
# 设置调色板
# cmap = sns.color_palette("Spectral", as_cmap=True)
# cmap = sns.color_palette("pastel", as_cmap=True)
# 图中的标签
x_label = ['0%-20%', '20%-40%', '40%-60%', '60%-80%', '80%-100%']
y_label = ['R-BI', 'I-BI', 'R-SX', 'I-SX', 'R-ETIOL', 'I-ETIOL', 'R-EET', 'I-EET',
'DIAG', 'R-DR', 'I-DR', 'R-MA', 'I-MA', 'R-PRCTN', 'I-PRCTN']
# 热图
ax = sns.heatmap(action_prop, center=0.8, square=False, linewidths=0.1,
cbar_kws={"shrink": 1.0}, xticklabels=x_label, yticklabels=y_label)
ax.xaxis.tick_top()
plt.xticks(rotation=20)
plt.tight_layout()
# plt.show()
pdf.savefig()
# # ----------------------------------------------------------------------------------------------------------------------
# # 查看症状
# speaker = '患者'
# dialogue_act = 'Request-Symptom'
# for _, value in data.items():
# for item in value['dialogue']:
# if item['speaker'] == speaker and item['dialogue_act'] == dialogue_act:
# print(item)
#
# # 医生 Inform-Symptom
# # 1. 体温比较高,是发热的
# # 2. 精神可以,说明病情不严重,不要担心
#
# # 病人 Request-Symptom
# # 1. 奶瓣是什么形状?
# # 2. 脱水后有什么症状么?
#
# # ----------------------------------------------------------------------------------------------------------------------
# 症状和疾病的共现信息
diseases, symptoms = [], []
for _, value in data.items():
diseases.append(value['diagnosis'])
for item in value['dialogue']:
for symptom in item['symptom_norm']:
symptoms.append(symptom)
dis_counter = Counter(diseases).most_common(n=10)
sx_counter = Counter(symptoms).most_common(n=50)
print(sx_counter)
# use translate api
dis_labels = ['Bronchitis', 'Fever', 'Diarrhea', 'URI', 'Dyspepsia', 'Cold', 'Cough', 'Jaundice', 'Constipation', 'BPN']
sx_labels = ['Cough', 'Fever', 'Cold', 'Phlegm', 'Diarrhea', 'Runny nose', 'Vomit', 'Moderately hot', 'Jaundice',
'Pneumonia', 'Indigestion', 'High fever', 'Loose stool', 'Viral infection', 'Stuffy nose', 'Bronchitis',
'Low heat', 'Bacterial infections', 'Crying', 'Constipate']
dis2id = {item[0]: idx for idx, item in enumerate(dis_counter)}
sx2id = {item[0]: idx for idx, item in enumerate(sx_counter)}
com = np.zeros((len(dis2id), len(sx2id)))
for _, value in data.items():
dis_id = dis2id.get(value['diagnosis'])
sx_ids = set()
for item in value['dialogue']:
for sx in item['symptom_norm']:
if sx in sx2id:
sx_ids.add(sx2id.get(sx))
for sx_id in sx_ids:
com[dis_id][sx_id] += 1
com_norm = com / com.sum(axis=0)
with PdfPages('dis_sx.pdf') as pdf:
plt.clf()
sns.set(rc={'figure.figsize': (16, 9)})
# ax = sns.heatmap(com_norm, xticklabels=sx_labels, yticklabels=dis_labels, annot=False, linewidths=0.01, cbar=True, cbar_kws={"shrink": 1.0})
ax = sns.heatmap(com_norm, xticklabels=False, yticklabels=dis_labels, annot=False, linewidths=0.01, cbar=True, cbar_kws={"shrink": 1.0})
cbar = ax.collections[0].colorbar
cbar.ax.tick_params(labelsize=28)
ax.set_xlabel('Top-50 most common symptoms', labelpad=20, fontsize=32)
# ax.xaxis.set_tick_params(labelsize=28)
ax.yaxis.set_tick_params(labelsize=28)
ax.xaxis.set_label_position('top')
plt.tight_layout()
# plt.show()
pdf.savefig()
symptom_labels = defaultdict(int)
for key, value in data.items():
for item in list(value['implicit_info']['Symptom'].values()):
symptom_labels[item] += 1
symptom_labels['explicit_symptom'] += len(value['explicit_info']['Symptom'])
group_size = [16524, 6365, 4275]
group_size_ratio = np.array(group_size) / np.sum(group_size)
print(np.array(group_size) / len(data))
print(np.sum(group_size) / len(data))
#
from nltk.translate.bleu_score import sentence_bleu
b4 = []
for key, value in data.items():
r1 = value['report'][0]
r2 = value['report'][1]
# b4.append(sentence_bleu([r1], r2))
b4.append(sentence_bleu([r2], r1))
print(np.mean(np.array(b4)))
# ----------------------------------------------------------------------------------------------------------------------
# 0.84979424 0.95475113 0.79243542 0.72674419 0.65572034
# 0.83793738 0.82195122 0.90947368 0.81928839 0.98129252
# 0.84979424 0.95475113 0.79243542 0.72674419 0.65572034
# 0.84346225 0.88292683 0.95052632 0.93071161 0.98129252
fields = ['主诉', '现病史', '辅助检查', '既往史', '诊断', '建议']
field = '既往史'
n = 0
for _, value in data.items():
report1, report2 = value['report'][0], value['report'][1]
disease = value['diagnosis']
dis_id = diseases.index(disease)
res1 = re.findall(r'.*{}:(.*)?'.format(field), report1)
res2 = re.findall(r'.*{}:(.*)?'.format(field), report2)
if res1 and ('不详' in res1[0] or '无' in res1[0] or '暂缺' in res1[0]):
n += 1
if res2 and ('不详' in res2[0] or '无' in res2[0] or '暂缺' in res2[0]):
n += 1
diseases_map = {
'上呼吸道感染': ['呼吸道'],
'小儿便秘': ['便秘'],
'小儿发热': ['发热'],
'小儿咳嗽': ['咳嗽'],
'小儿感冒': ['感冒'],
'小儿支气管炎': ['支气管', '肺', '支气'],
'小儿支气管肺炎': ['肺', '支气管', '支气'],
'小儿消化不良': ['消化', '腹'],
'小儿腹泻': ['腹', '消化'],
'新生儿黄疸': ['黄疸']
}
diseases = list(diseases_map.keys())
fields = ['主诉', '现病史', '辅助检查', '既往史', '诊断', '建议']
field = '诊断'
n, N = np.zeros(len(diseases)), np.zeros(len(diseases))
for _, value in data.items():
report1, report2 = value['report'][0], value['report'][1]
disease = value['diagnosis']
dis_id = diseases.index(disease)
res1 = re.findall(r'.*{}:(.*)?'.format(field), report1)
res2 = re.findall(r'.*{}:(.*)?'.format(field), report2)
if res1:
_in = False
for item in diseases_map[disease]:
if item in res1[0]:
_in = True
if _in:
n[dis_id] += 1
if res2:
_in = False
for item in diseases_map[disease]:
if item in res2[0]:
_in = True
if _in:
n[dis_id] += 1
N[dis_id] += 2
print(n/N)
print(sum(n)/sum(N))
# number of entities
n = 0
for _, value in data.items():
for item in value['dialogue']:
bio_labels = [_.strip() for _ in item['BIO_label'].split(' ')]
for bio_label in bio_labels:
if bio_label.startswith('B'):
n += 1
print(n / len(data))
# len of self-report
n = 0
for _, value in data.items():
report1 = value['report'][0]
report2 = value['report'][1]
n += len(report1) + len(report2)
print(n / len(data) / 2)
# Medical Report 平均字数统计
print(np.mean([len(''.join(value['report'][0].split('\n'))) + len(''.join(value['report'][1].split('\n')))
for _, value in data.items()]) / 2 - 40)
# 分部分统计
report_parts = ['主诉', '现病史', '辅助检查', '既往史', '诊断', '建议']
report_part = report_parts[0]
for report_part in report_parts:
s, n = 0, 0
for _, value in data.items():
res1 = re.findall(r'.*{}:(.*)?'.format(report_part), value['report'][0])
res2 = re.findall(r'.*{}:(.*)?'.format(report_part), value['report'][1])
if res1 and res2:
s += len(res1[0]) + len(res2[0])
n += 1
print('{}: {}'.format(report_part, s / n / 2))