-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbackend.py
190 lines (169 loc) · 7.78 KB
/
backend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import sys
import base64
import io
import json
import pandas as pd
# ### ADD SEABORN PLOT / MATPLOTLIB TO REQUIREMENTS IF WE WANT IT ###
import seaborn as sns
import matplotlib.pyplot as plt
from flask import Flask, abort, request, send_file, jsonify
from flask_restplus import Resource, Api, reqparse, fields
from flask_sqlalchemy import SQLAlchemy
from flask_cors import CORS
from model.train import logregcoeff, logreg, knn, dnn
from model.model import prediction_clean_data
from model.train import train_random_forest, graph_random_forest,feature_extraction_with_random_forest
from model.train import graph_random_forest_non_cat
AxisMapping = {
1: "Age",
2: "Sex (1: male; 0: female)",
3: "chest pain type (1:typical angin, 2:atypical angina, 3:non-anginal pain, 4:asymptomatic)",
4: "resting blood pressure",
5: "serum cholestoral in mg/dl",
6: "fasting blood sugar > 120 mg/dl",
7: "resting electrocardiographic (0:normal, 1:ST-T wave abnormality, 2:left ventricular hypertrophy)",
8: "maximum heart rate achieved",
9: "exercise induced angina",
10: "oldpeak = ST depression induced by exercise relative to rest",
11: "the slope of the peak exercise ST segment",
12: "number of major vessels (0-3) colored by flourosopy",
13: "thal(Thalassemia): 3 = normal; 6 = fixed defect; 7 = reversable defect"
}
"API "
app = Flask(__name__)
# to enable CORS for local development
cors = CORS(app, resources={r"*": {"origins": "*"}})
app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False
api = Api(app, title='Backend for 9321 a3', description='', default="Actions", default_label=None)
@api.route('/getdata/<string:agesex>/<int:indicator>')
class getdata(Resource):
@api.doc(responses={200: 'Success', 400: 'Incorrect input by user'})
def get(self,agesex,indicator):
if agesex.lower() == 'sex' or agesex == '1':
agesex = 1
elif agesex.lower() == 'age' or agesex == '2':
agesex = 2
else:
abort(400, 'agesex must be in set {age,sex,1,2}')
if indicator > 13 or indicator < 3:
abort(400, 'indicator must be between 3 and 13')
col1 = df.columns[agesex-1]
col2 = df.columns[indicator-1]
return {
"records":
[
{
'x' : row[col1],
'y' : row[col2],
}
for index, row in df[[df.columns[agesex-1], df.columns[indicator-1]]].iterrows()
]
}, 200
@api.route('/getgraph/<string:agesex>/<int:indicator>')
class getgraph(Resource):
@api.doc(responses={200: 'Success', 400: 'Incorrect input by user'})
def get(self,agesex,indicator):
if agesex.lower() == 'age' or agesex == '1':
agesex = 1
elif agesex.lower() == 'sex' or agesex == '2':
agesex = 2
else:
abort(400, 'agesex must be in set {age,sex,1,2}')
if indicator > 13 or indicator < 3:
abort(400, 'indicator must be between 3 and 13')
col1 = df.columns[agesex-1]
col2 = df.columns[indicator-1]
sns.set(font_scale=0.5, style="whitegrid")
if agesex == 1: # Age
if indicator in [3,6,7,9,11,12,13]: #Categorical data
graph = sns.boxplot(x=df[col2], y=df[col1])
graph.set(xlabel=AxisMapping[indicator], ylabel=AxisMapping[agesex])
else: #Numerical data
graph = sns.regplot(x=df[col1], y=df[col2])
graph.set(xlabel=AxisMapping[agesex], ylabel=AxisMapping[indicator])
else: # Sex
if indicator in [3,6,7,9,11,12,13]:
graph = sns.countplot(x=col1, data=df, hue=col2)
graph.set(xlabel=AxisMapping[agesex], title="Count " + AxisMapping[indicator] )
else:
graph = sns.boxplot(x=df[col1], y=df[col2])
graph.set(xlabel=AxisMapping[agesex], ylabel=AxisMapping[indicator])
img = io.BytesIO()
plt.savefig(img, format='png')
plt.clf()
img.seek(0)
return {"bytearray" : base64.b64encode(img.getvalue()).decode()},200
@api.route('/getcoefficients/')
class getcoefficients(Resource):
@api.doc(responses={200: 'Success'})
def get(self):
return logregcoeff(df_model)
@api.route('/getfactors/')
class getFactors(Resource):
@api.doc(response={200,'Success'})
def get(self):
return graph_random_forest(df_model)
@api.route('/getnoncatfactors/')
class getNonCatFactors(Resource):
@api.doc(response = {200,'Success'})
def get(self):
return graph_random_forest_non_cat(df_model)
@api.route('/getprediction/')
class postprediction(Resource):
@api.doc(body=api.model("payload", {
"modeltype":fields.String(description="modeltype",required=False),
"age":fields.Integer(description="age",required=True),
"sex":fields.Boolean(description="sex",required=True),
"cp":fields.Integer(description="cp",required=True),
"trestbps":fields.Integer(description="trestbps",required=True),
"chol":fields.Integer(description="chol",required=True),
"fbs":fields.Integer(description="fbs",required=True),
"restecg":fields.Integer(description="restecg",required=True),
"thalach":fields.Integer(description="thalach",required=True),
"exang":fields.Boolean(description="exang",required=True),
"oldpeak":fields.Float(description="oldpeak",required=True),
"slope":fields.Integer(description="slope",required=True),
"ca":fields.Integer(description="ca",required=True),
"thal":fields.Integer(description="thal",required=True),
}),\
responses={200: 'Success', 400: 'Incorrect input by user'})
def post(self):
jsonreq = request.get_json()
modeltype = ""
for field in jsonreq:
if field not in ["modeltype", "thal"]:
if int(jsonreq[f"{field}"]) < df[f"{field}"].min() or int(jsonreq[f"{field}"]) > df[f"{field}"].max():
abort(400, f'{field} must be between { df[f"{field}"].min()} and {df[f"{field}"].max()}')
if field == "thal":
if int(jsonreq[f'{field}']) not in [3,6,7]:
abort(400, f'thal must be between either 3, 6 or 7')
if field == "modeltype":
if jsonreq["modeltype"] is not None:
if jsonreq["modeltype"].lower() in ["knn","dnn","logreg",""]:
modeltype=jsonreq["modeltype"].lower()
else:
abort(400, 'modeltype must be in [knn,dnn,logreg]')
pred_values = pd.DataFrame.from_dict({field:[jsonreq[field]] for field in jsonreq if field != "modeltype"})
pred_values = prediction_clean_data(pred_values,df_norm)
if modeltype:
if modeltype == "knn":
return knn(df_model,pred_values),200
elif modeltype == "dnn":
return dnn(df_model,pred_values),200
elif modeltype == "logreg":
return logreg(df_model,pred_values),200
elif modeltype == "randomforest":
return train_random_forest(df_model,pred_values),200
elif modeltype =="randomforest_advance":
return feature_extraction_with_random_forest(df_model,pred_values),200
return [knn(df_model,pred_values),
dnn(df_model,pred_values),
logreg(df_model,pred_values),
train_random_forest(df_model,pred_values),
feature_extraction_with_random_forest(df_model,pred_values)]\
,200
if __name__ == '__main__':
df = pd.read_csv("./data/analytics.csv")
df_model = pd.read_csv("./data/model.csv")
df_norm = pd.read_csv("./data/normalised.csv")
app.run(debug=True)