-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgeneral_util.py
132 lines (117 loc) · 7.5 KB
/
general_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os.path as osp
import os
from PIL import Image
import torch
import numpy as np
import cv2
_palette=[0, 0, 0, 128, 0, 0, 0, 128, 0, 128, 128, 0, 0, 0, 128, 128, 0, 128, 0, 128, 128, 128, 128, 128, 64, 0, 0, 191, 0, 0, 64, 128, 0, 191, 128, 0, 64, 0, 128, 191, 0, 128, 64, 128, 128, 191, 128, 128, 0, 64, 0, 128, 64, 0, 0, 191, 0, 128, 191, 0, 0, 64, 128, 128, 64, 128, 22, 22, 22, 23, 23, 23, 24, 24, 24, 25, 25, 25, 26, 26, 26, 27, 27, 27, 28, 28, 28, 29, 29, 29, 30, 30, 30, 31, 31, 31, 32, 32, 32, 33, 33, 33, 34, 34, 34, 35, 35, 35, 36, 36, 36, 37, 37, 37, 38, 38, 38, 39, 39, 39, 40, 40, 40, 41, 41, 41, 42, 42, 42, 43, 43, 43, 44, 44, 44, 45, 45, 45, 46, 46, 46, 47, 47, 47, 48, 48, 48, 49, 49, 49, 50, 50, 50, 51, 51, 51, 52, 52, 52, 53, 53, 53, 54, 54, 54, 55, 55, 55, 56, 56, 56, 57, 57, 57, 58, 58, 58, 59, 59, 59, 60, 60, 60, 61, 61, 61, 62, 62, 62, 63, 63, 63, 64, 64, 64, 65, 65, 65, 66, 66, 66, 67, 67, 67, 68, 68, 68, 69, 69, 69, 70, 70, 70, 71, 71, 71, 72, 72, 72, 73, 73, 73, 74, 74, 74, 75, 75, 75, 76, 76, 76, 77, 77, 77, 78, 78, 78, 79, 79, 79, 80, 80, 80, 81, 81, 81, 82, 82, 82, 83, 83, 83, 84, 84, 84, 85, 85, 85, 86, 86, 86, 87, 87, 87, 88, 88, 88, 89, 89, 89, 90, 90, 90, 91, 91, 91, 92, 92, 92, 93, 93, 93, 94, 94, 94, 95, 95, 95, 96, 96, 96, 97, 97, 97, 98, 98, 98, 99, 99, 99, 100, 100, 100, 101, 101, 101, 102, 102, 102, 103, 103, 103, 104, 104, 104, 105, 105, 105, 106, 106, 106, 107, 107, 107, 108, 108, 108, 109, 109, 109, 110, 110, 110, 111, 111, 111, 112, 112, 112, 113, 113, 113, 114, 114, 114, 115, 115, 115, 116, 116, 116, 117, 117, 117, 118, 118, 118, 119, 119, 119, 120, 120, 120, 121, 121, 121, 122, 122, 122, 123, 123, 123, 124, 124, 124, 125, 125, 125, 126, 126, 126, 127, 127, 127, 128, 128, 128, 129, 129, 129, 130, 130, 130, 131, 131, 131, 132, 132, 132, 133, 133, 133, 134, 134, 134, 135, 135, 135, 136, 136, 136, 137, 137, 137, 138, 138, 138, 139, 139, 139, 140, 140, 140, 141, 141, 141, 142, 142, 142, 143, 143, 143, 144, 144, 144, 145, 145, 145, 146, 146, 146, 147, 147, 147, 148, 148, 148, 149, 149, 149, 150, 150, 150, 151, 151, 151, 152, 152, 152, 153, 153, 153, 154, 154, 154, 155, 155, 155, 156, 156, 156, 157, 157, 157, 158, 158, 158, 159, 159, 159, 160, 160, 160, 161, 161, 161, 162, 162, 162, 163, 163, 163, 164, 164, 164, 165, 165, 165, 166, 166, 166, 167, 167, 167, 168, 168, 168, 169, 169, 169, 170, 170, 170, 171, 171, 171, 172, 172, 172, 173, 173, 173, 174, 174, 174, 175, 175, 175, 176, 176, 176, 177, 177, 177, 178, 178, 178, 179, 179, 179, 180, 180, 180, 181, 181, 181, 182, 182, 182, 183, 183, 183, 184, 184, 184, 185, 185, 185, 186, 186, 186, 187, 187, 187, 188, 188, 188, 189, 189, 189, 190, 190, 190, 191, 191, 191, 192, 192, 192, 193, 193, 193, 194, 194, 194, 195, 195, 195, 196, 196, 196, 197, 197, 197, 198, 198, 198, 199, 199, 199, 200, 200, 200, 201, 201, 201, 202, 202, 202, 203, 203, 203, 204, 204, 204, 205, 205, 205, 206, 206, 206, 207, 207, 207, 208, 208, 208, 209, 209, 209, 210, 210, 210, 211, 211, 211, 212, 212, 212, 213, 213, 213, 214, 214, 214, 215, 215, 215, 216, 216, 216, 217, 217, 217, 218, 218, 218, 219, 219, 219, 220, 220, 220, 221, 221, 221, 222, 222, 222, 223, 223, 223, 224, 224, 224, 225, 225, 225, 226, 226, 226, 227, 227, 227, 228, 228, 228, 229, 229, 229, 230, 230, 230, 231, 231, 231, 232, 232, 232, 233, 233, 233, 234, 234, 234, 235, 235, 235, 236, 236, 236, 237, 237, 237, 238, 238, 238, 239, 239, 239, 240, 240, 240, 241, 241, 241, 242, 242, 242, 243, 243, 243, 244, 244, 244, 245, 245, 245, 246, 246, 246, 247, 247, 247, 248, 248, 248, 249, 249, 249, 250, 250, 250, 251, 251, 251, 252, 252, 252, 253, 253, 253, 254, 254, 254, 255, 255, 255]
def touch_dir(dir_name):
if not osp.exists(dir_name):
os.makedirs(dir_name)
def save_p_img(img, img_name):
if isinstance(img, torch.Tensor):
img = img.cpu().numpy().astype(np.uint8)
img = Image.fromarray(img.astype(np.uint8))
img.putpalette(_palette)
img.save(img_name)
def save_rgb_img(img, img_name, mul=False):
if isinstance(img, torch.Tensor):
if mul:
img = img.mul(255).byte()
else:
img = img.byte()
img = img.cpu().numpy().squeeze().transpose((1, 2, 0))
img = Image.fromarray(img)
img.save(img_name)
def save_prob_img(img, img_name):
if isinstance(img, torch.Tensor):
img = img.mul(255).byte()
img = img.cpu().numpy().squeeze()
img = Image.fromarray(img)
img.save(img_name)
# B,C -> B,B
def calc_cdist(a, b, metric='euclidean'):
diff = a[:, None, :] - b[None, :, :]
if metric == 'euclidean':
return torch.sqrt(torch.sum(diff*diff, dim=2) + 1e-12)
elif metric == 'sqeuclidean':
return torch.sum(diff*diff, dim=2)
elif metric == 'cityblock':
return torch.sum(diff.abs(), dim=2)
else:
raise NotImplementedError("Metric %s has not been implemented!" % metric)
def replace_apex(str_1, apex):
str_1 = str_1.split('.')[-2] + '.' + apex
return str_1
# B -> B,B
def calc_ndist(a,b):
return a[:,None] - b[None,:]
def convert_PIL_to_numpy(image, format):
"""
Convert PIL image to numpy array of target format.
Args:
image (PIL.Image): a PIL image
format (str): the format of output image
Returns:
(np.ndarray): also see `read_image`
"""
if format is not None:
# PIL only supports RGB, so convert to RGB and flip channels over below
conversion_format = format
if format in ["BGR", "YUV-BT.601"]:
conversion_format = "RGB"
image = image.convert(conversion_format)
image = np.asarray(image)
# PIL squeezes out the channel dimension for "L", so make it HWC
if format == "L":
image = np.expand_dims(image, -1)
# handle formats not supported by PIL
elif format == "BGR":
# flip channels if needed
image = image[:, :, ::-1]
elif format == "YUV-BT.601":
image = image / 255.0
image = np.dot(image, np.array(_M_RGB2YUV).T)
return image
def convert_image_to_rgb(image, format):
"""
Convert an image from given format to RGB.
Args:
image (np.ndarray or Tensor): an HWC image
format (str): the format of input image, also see `read_image`
Returns:
(np.ndarray): (H,W,3) RGB image in 0-255 range, can be either float or uint8
"""
if isinstance(image, torch.Tensor):
image = image.cpu().numpy()
if format == "BGR":
image = image[:, :, [2, 1, 0]]
elif format == "YUV-BT.601":
image = np.dot(image, np.array(_M_YUV2RGB).T)
image = image * 255.0
else:
if format == "L":
image = image[:, :, 0]
image = image.astype(np.uint8)
image = np.asarray(Image.fromarray(image, mode=format).convert("RGB"))
return image
def read_image(file_name, format=None):
"""
Read an image into the given format.
Will apply rotation and flipping if the image has such exif information.
Args:
file_name (str): image file path
format (str): one of the supported image modes in PIL, or "BGR" or "YUV-BT.601".
Returns:
image (np.ndarray): an HWC image in the given format, which is 0-255, uint8 for
supported image modes in PIL or "BGR"; float (0-1 for Y) for YUV-BT.601.
"""
image = Image.open(file_name)
return convert_PIL_to_numpy(image, format)
# create heatmap from mask on image
def show_cam_on_image(img, mask):
heatmap = cv2.applyColorMap(np.uint8(255 * mask), cv2.COLORMAP_JET)
heatmap = np.float32(heatmap) / 255
cam = heatmap + np.float32(img)
cam = cam / np.max(cam)
return cam