forked from opea-project/GenAIExamples
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdocsum.py
306 lines (255 loc) · 11.2 KB
/
docsum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import asyncio
import base64
import os
import subprocess
import uuid
from typing import List
from comps import MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceRoleType, ServiceType
from comps.cores.mega.utils import handle_message
from comps.cores.proto.api_protocol import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseChoice,
ChatMessage,
DocSumChatCompletionRequest,
UsageInfo,
)
from fastapi import File, Request, UploadFile
from fastapi.responses import StreamingResponse
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
ASR_SERVICE_HOST_IP = os.getenv("ASR_SERVICE_HOST_IP", "0.0.0.0")
ASR_SERVICE_PORT = int(os.getenv("ASR_SERVICE_PORT", 7066))
LLM_SERVICE_HOST_IP = os.getenv("LLM_SERVICE_HOST_IP", "0.0.0.0")
LLM_SERVICE_PORT = int(os.getenv("LLM_SERVICE_PORT", 9000))
def align_inputs(self, inputs, cur_node, runtime_graph, llm_parameters_dict, **kwargs):
if self.services[cur_node].service_type == ServiceType.LLM:
for key_to_replace in ["text", "asr_result"]:
if key_to_replace in inputs:
inputs["messages"] = inputs[key_to_replace]
del inputs[key_to_replace]
docsum_parameters = kwargs.get("docsum_parameters", None)
if docsum_parameters:
docsum_parameters = docsum_parameters.model_dump()
del docsum_parameters["messages"]
inputs.update(docsum_parameters)
if "id" in inputs:
del inputs["id"]
if "max_new_tokens" in inputs:
del inputs["max_new_tokens"]
if "input" in inputs:
del inputs["input"]
elif self.services[cur_node].service_type == ServiceType.ASR:
if "video" in inputs:
audio_base64 = video2audio(inputs["video"])
inputs["audio"] = audio_base64
return inputs
def read_pdf(file):
from langchain.document_loaders import PyPDFLoader
loader = PyPDFLoader(file)
docs = loader.load_and_split()
return docs
def video2audio(
video_base64: str,
) -> str:
"""Convert a base64 video string to a base64 audio string using ffmpeg.
Args:
video_base64 (str): Base64 encoded video string.
Returns:
str: Base64 encoded audio string.
"""
video_data = base64.b64decode(video_base64)
uid = str(uuid.uuid4())
temp_video_path = f"{uid}.mp4"
temp_audio_path = f"{uid}.mp3"
with open(temp_video_path, "wb") as video_file:
video_file.write(video_data)
try:
subprocess.run(
["ffmpeg", "-i", temp_video_path, "-q:a", "0", "-map", "a", temp_audio_path],
check=True,
stdout=subprocess.DEVNULL,
stderr=subprocess.STDOUT,
)
# Read the extracted audio file and encode it to base64
with open(temp_audio_path, "rb") as audio_file:
audio_base64 = base64.b64encode(audio_file.read()).decode("utf-8")
finally:
# Clean up the temporary video file
os.remove(temp_video_path)
os.remove(temp_audio_path)
return audio_base64
def read_text_from_file(file, save_file_name):
import docx2txt
from langchain.text_splitter import CharacterTextSplitter
# read text file
if file.headers["content-type"] == "text/plain":
file.file.seek(0)
content = file.file.read().decode("utf-8")
# Split text
text_splitter = CharacterTextSplitter()
texts = text_splitter.split_text(content)
# Create multiple documents
file_content = texts
# read pdf file
elif file.headers["content-type"] == "application/pdf":
documents = read_pdf(save_file_name)
file_content = [doc.page_content for doc in documents]
# read docx file
elif (
file.headers["content-type"] == "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
or file.headers["content-type"] == "application/octet-stream"
):
file_content = docx2txt.process(save_file_name)
return file_content
class DocSumService:
def __init__(self, host="0.0.0.0", port=8000):
self.host = host
self.port = port
ServiceOrchestrator.align_inputs = align_inputs
self.megaservice = ServiceOrchestrator()
self.megaservice_text_only = ServiceOrchestrator()
self.endpoint = str(MegaServiceEndpoint.DOC_SUMMARY)
def add_remote_service(self):
asr = MicroService(
name="asr",
host=ASR_SERVICE_HOST_IP,
port=ASR_SERVICE_PORT,
endpoint="/v1/asr",
use_remote_service=True,
service_type=ServiceType.ASR,
)
llm = MicroService(
name="llm",
host=LLM_SERVICE_HOST_IP,
port=LLM_SERVICE_PORT,
endpoint="/v1/docsum",
use_remote_service=True,
service_type=ServiceType.LLM,
)
self.megaservice.add(asr).add(llm)
self.megaservice.flow_to(asr, llm)
self.megaservice_text_only.add(llm)
async def handle_request(self, request: Request, files: List[UploadFile] = File(default=None)):
"""Accept pure text, or files .txt/.pdf.docx, audio/video base64 string."""
if "application/json" in request.headers.get("content-type"):
data = await request.json()
stream_opt = data.get("stream", True)
summary_type = data.get("summary_type", "auto")
chunk_size = data.get("chunk_size", -1)
chunk_overlap = data.get("chunk_overlap", -1)
chat_request = ChatCompletionRequest.model_validate(data)
prompt = handle_message(chat_request.messages)
initial_inputs_data = {data["type"]: prompt}
elif "multipart/form-data" in request.headers.get("content-type"):
data = await request.form()
stream_opt = data.get("stream", True)
summary_type = data.get("summary_type", "auto")
chunk_size = data.get("chunk_size", -1)
chunk_overlap = data.get("chunk_overlap", -1)
chat_request = ChatCompletionRequest.model_validate(data)
data_type = data.get("type")
file_summaries = []
if files:
for file in files:
# Fix concurrency issue with the same file name
# https://github.com/opea-project/GenAIExamples/issues/1279
uid = str(uuid.uuid4())
file_path = f"/tmp/{uid}"
if data_type is not None and data_type in ["audio", "video"]:
raise ValueError(
"Audio and Video file uploads are not supported in docsum with curl request, \
please use the UI or pass base64 string of the content directly."
)
else:
import aiofiles
async with aiofiles.open(file_path, "wb") as f:
await f.write(await file.read())
docs = read_text_from_file(file, file_path)
os.remove(file_path)
if isinstance(docs, list):
file_summaries.extend(docs)
else:
file_summaries.append(docs)
if file_summaries:
prompt = handle_message(chat_request.messages) + "\n".join(file_summaries)
else:
prompt = handle_message(chat_request.messages)
data_type = data.get("type")
if data_type is not None:
initial_inputs_data = {}
initial_inputs_data[data_type] = prompt
else:
initial_inputs_data = {"messages": prompt}
else:
raise ValueError(f"Unknown request type: {request.headers.get('content-type')}")
docsum_parameters = DocSumChatCompletionRequest(
messages="",
max_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
top_k=chat_request.top_k if chat_request.top_k else 10,
top_p=chat_request.top_p if chat_request.top_p else 0.95,
temperature=chat_request.temperature if chat_request.temperature else 0.01,
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
stream=stream_opt,
model=chat_request.model if chat_request.model else None,
language=chat_request.language if chat_request.language else "auto",
summary_type=summary_type,
chunk_overlap=chunk_overlap,
chunk_size=chunk_size,
)
text_only = "text" in initial_inputs_data
if not text_only:
result_dict, runtime_graph = await self.megaservice.schedule(
initial_inputs=initial_inputs_data, docsum_parameters=docsum_parameters
)
for node, response in result_dict.items():
# Here it suppose the last microservice in the megaservice is LLM.
if (
isinstance(response, StreamingResponse)
and node == list(self.megaservice.services.keys())[-1]
and self.megaservice.services[node].service_type == ServiceType.LLM
):
return response
else:
result_dict, runtime_graph = await self.megaservice_text_only.schedule(
initial_inputs=initial_inputs_data, docsum_parameters=docsum_parameters
)
for node, response in result_dict.items():
# Here it suppose the last microservice in the megaservice is LLM.
if (
isinstance(response, StreamingResponse)
and node == list(self.megaservice.services.keys())[-1]
and self.megaservice.services[node].service_type == ServiceType.LLM
):
return response
last_node = runtime_graph.all_leaves()[-1]
response = result_dict[last_node]["text"]
choices = []
usage = UsageInfo()
choices.append(
ChatCompletionResponseChoice(
index=0,
message=ChatMessage(role="assistant", content=response),
finish_reason="stop",
)
)
return ChatCompletionResponse(model="docsum", choices=choices, usage=usage)
def start(self):
self.service = MicroService(
self.__class__.__name__,
service_role=ServiceRoleType.MEGASERVICE,
host=self.host,
port=self.port,
endpoint=self.endpoint,
input_datatype=ChatCompletionRequest,
output_datatype=ChatCompletionResponse,
)
self.service.add_route(self.endpoint, self.handle_request, methods=["POST"])
self.service.start()
if __name__ == "__main__":
docsum = DocSumService(port=MEGA_SERVICE_PORT)
docsum.add_remote_service()
docsum.start()