forked from opea-project/GenAIExamples
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvisualqna.py
98 lines (88 loc) · 3.8 KB
/
visualqna.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import os
from comps import MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceRoleType, ServiceType
from comps.cores.mega.utils import handle_message
from comps.cores.proto.api_protocol import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseChoice,
ChatMessage,
UsageInfo,
)
from comps.cores.proto.docarray import LLMParams
from fastapi import Request
from fastapi.responses import StreamingResponse
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
LVM_SERVICE_HOST_IP = os.getenv("LVM_SERVICE_HOST_IP", "0.0.0.0")
LVM_SERVICE_PORT = int(os.getenv("LLM_SERVICE_PORT", 9399))
class VisualQnAService:
def __init__(self, host="0.0.0.0", port=8000):
self.host = host
self.port = port
self.megaservice = ServiceOrchestrator()
self.endpoint = str(MegaServiceEndpoint.VISUAL_QNA)
def add_remote_service(self):
llm = MicroService(
name="lvm",
host=LVM_SERVICE_HOST_IP,
port=LVM_SERVICE_PORT,
endpoint="/v1/lvm",
use_remote_service=True,
service_type=ServiceType.LVM,
)
self.megaservice.add(llm)
async def handle_request(self, request: Request):
data = await request.json()
stream_opt = data.get("stream", False)
chat_request = ChatCompletionRequest.parse_obj(data)
prompt, images = handle_message(chat_request.messages)
parameters = LLMParams(
max_new_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
top_k=chat_request.top_k if chat_request.top_k else 10,
top_p=chat_request.top_p if chat_request.top_p else 0.95,
temperature=chat_request.temperature if chat_request.temperature else 0.01,
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
stream=stream_opt,
)
result_dict, runtime_graph = await self.megaservice.schedule(
initial_inputs={"prompt": prompt, "image": images[0]}, llm_parameters=parameters
)
for node, response in result_dict.items():
# Here it suppose the last microservice in the megaservice is LVM.
if (
isinstance(response, StreamingResponse)
and node == list(self.megaservice.services.keys())[-1]
and self.megaservice.services[node].service_type == ServiceType.LVM
):
return response
last_node = runtime_graph.all_leaves()[-1]
response = result_dict[last_node]["text"]
choices = []
usage = UsageInfo()
choices.append(
ChatCompletionResponseChoice(
index=0,
message=ChatMessage(role="assistant", content=response),
finish_reason="stop",
)
)
return ChatCompletionResponse(model="visualqna", choices=choices, usage=usage)
def start(self):
self.service = MicroService(
self.__class__.__name__,
service_role=ServiceRoleType.MEGASERVICE,
host=self.host,
port=self.port,
endpoint=self.endpoint,
input_datatype=ChatCompletionRequest,
output_datatype=ChatCompletionResponse,
)
self.service.add_route(self.endpoint, self.handle_request, methods=["POST"])
self.service.start()
if __name__ == "__main__":
visualqna = VisualQnAService(port=MEGA_SERVICE_PORT)
visualqna.add_remote_service()
visualqna.start()