-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsegment.py
415 lines (359 loc) · 17.4 KB
/
segment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
import time
from itertools import product
import numpy as np
import torch
def _segment_id2sparse_block_diag_matrix_coordinate(segment_ids):
"""
segment_ids is a ascending 1d numpy array, dtype int, e.g. [0,0,0,1,2,2,3, ...]
we want to create a sparse block digonal matrix from segment_ids,
i-th block (square) has a shape (number_of_i_in_segment_ids, number_of_i_in_segment_ids)
and each block is filled with 1
e.g. [0,0,0,1,2,2] -->
[[1,1,1,0,0,0],
[1,1,1,0,0,0],
[1,1,1,0,0,0],
[0,0,0,1,0,0],
[0,0,0,0,1,1],
[0,0,0,0,1,1]]
Attention!: But we don't return the matrix, we return the index of nonzero in this matrix
in the form of a numpy array of shape 2 x N, first row is row index, second row is col index
"""
mask = segment_ids[:-1] != segment_ids[1:]
segment_start = np.concatenate([np.array([0]),
np.arange(1, len(segment_ids))[mask],
np.array([len(segment_ids)])])
segment_len = np.diff(segment_start)
row_idx = []
col_idx = []
shift = 0
for i, slen in enumerate(segment_len):
shift += i and segment_len[i - 1]
col_idx.append(np.tile(np.arange(slen), slen) + shift)
row_idx.append(np.repeat(np.arange(slen), slen) + shift)
col_idx = np.concatenate(col_idx)
row_idx = np.concatenate(row_idx)
return np.stack([row_idx, col_idx], axis=0)
def segment_softmax_op(logits, segment_ids, tc=None):
"""
logits is a 1d tensor of attention score (refer to DPMPN paper),
i-th node has attention score logits[i] which is in the subgraph developed for the query segment_ids[i]
This function try to calculate the softmax of the nodes in the same subgraph
:param logits: 1d Tensor
:param segment_ids: id numpy.array eg_idx, sorted
:return:
softmax for logtis with same segment_id
"""
device = logits.get_device()
if device == -1:
device = torch.device('cpu')
else:
device = torch.device('cuda:{}'.format(device))
len_logits = len(segment_ids)
if tc:
t_start = time.time()
sparse_index_np = _segment_id2sparse_block_diag_matrix_coordinate(segment_ids)
if tc:
tc['model']['DP_attn_softmax_trans_matrix'] = time.time() - t_start
sparse_index = torch.LongTensor(sparse_index_np)
sparse_value = torch.ones(sparse_index_np.shape[1], dtype=torch.float)
trans_matrix_sparse_th = torch.sparse.FloatTensor(sparse_index, sparse_value,
torch.Size([len_logits, len_logits])).to(device)
softmax_den = torch.squeeze(torch.sparse.mm(trans_matrix_sparse_th, torch.exp(logits).unsqueeze(1)))
logits_segment_softmax = torch.exp(logits) / softmax_den
return logits_segment_softmax
def segment_sum(logits, segment_ids, keep_length=True):
"""
:param logits:
:param segment_ids:
:param keep_length: if True, return a Tensor with the same length as logits
out[i] is the sum of segments of segment_ids[i]
else, return a Tensor with the length of segment_ids
:return:
"""
device = logits.get_device()
if device == -1:
device = torch.device('cpu')
else:
device = torch.device('cuda:{}'.format(device))
logits_len = len(segment_ids)
num_segments = max(segment_ids) + 1
# calculate summation of logits value for each group
sparse_index = torch.LongTensor(np.stack([segment_ids, np.arange(logits_len)]))
sparse_value = torch.ones(logits_len, dtype=torch.float)
trans_matrix_sparse = torch.sparse.FloatTensor(sparse_index, sparse_value,
torch.Size([num_segments, logits_len])).to(device)
seg_sum = torch.sparse.mm(trans_matrix_sparse, logits.unsqueeze(1))
if not keep_length:
return seg_sum
# repeat summation to have the same length as logits
sparse_index2 = torch.LongTensor(np.stack([np.arange(logits_len), segment_ids]))
sparse_value2 = torch.ones(logits_len, dtype=torch.float)
trans_matrix_sparse2 = torch.sparse.FloatTensor(sparse_index2, sparse_value2,
torch.Size([logits_len, num_segments])).to(device)
seg_sum_repeat = torch.sparse.mm(trans_matrix_sparse2, seg_sum)
return torch.squeeze(seg_sum_repeat)
def segment_max(logits, segment_ids, keep_length=True):
"""
:param logits:
:param segment_ids:
:param keep_length:
if True, return a Tensor with the same length as logits
out[i] is the sum of segments of segment_ids[i]
else, return a Tensor with the length of segment_ids
:return:
1d Tensor
"""
device = logits.get_device()
n_logits = len(segment_ids)
mask = segment_ids[1:] != segment_ids[:-1] #
seg_head_ids = np.concatenate([np.array([0]),
np.arange(1, n_logits)[mask],
np.array([n_logits])]).astype(np.int64)
if keep_length:
seg_max_ind = torch.cat([(torch.argmax(logits[torch.arange(head, tail).to(torch.int64).to(device)]) + torch.tensor([head]).to(torch.int64).to(device)).repeat(tail - head) for head, tail in zip(seg_head_ids[:-1], seg_head_ids[1:])])
else:
seg_max_ind = torch.cat([torch.argmax(logits[torch.arange(head, tail).to(torch.int64).to(device)]) + torch.tensor([head]).to(torch.int64).to(device) for head, tail in zip(seg_head_ids[:-1], seg_head_ids[1:])])
return logits[seg_max_ind]
def segment_softmax_op_v2(logits, segment_ids, tc=None):
"""
:param logits:
:param segment_ids: numpy array, same length as logits, logits[i] belongs to segment segment_ids[i]
logits in the same segment should aranged in a continuous block
:param tc:
:return:
"""
device = logits.get_device()
if device == -1:
device = torch.device('cpu')
else:
device = torch.device('cuda:{}'.format(device))
if tc:
t_start = time.time()
logits_len = len(segment_ids)
num_segments = max(segment_ids) + 1
# numerical stable softmax
logits = logits - segment_max(logits, segment_ids, keep_length=True)
logits_exp = torch.exp(logits).unsqueeze(1) # e^{logit} N x 1
# calculate summation of exponential of logits value for each group
sparse_index = torch.LongTensor(np.stack([segment_ids, np.arange(logits_len)]))
sparse_value = torch.ones(logits_len, dtype=torch.float)
trans_matrix_sparse = torch.sparse.FloatTensor(sparse_index, sparse_value,
torch.Size([num_segments, logits_len])).to(device)
softmax_den = torch.sparse.mm(trans_matrix_sparse, logits_exp)
# repeat softmax denominator to have the same length as logits
sparse_index2 = torch.LongTensor(np.stack([np.arange(logits_len), segment_ids]))
sparse_value2 = torch.ones(logits_len, dtype=torch.float)
trans_matrix_sparse2 = torch.sparse.FloatTensor(sparse_index2, sparse_value2,
torch.Size([logits_len, num_segments])).to(device)
softmax_den_repeat = torch.sparse.mm(trans_matrix_sparse2, softmax_den)
out = torch.squeeze(logits_exp / softmax_den_repeat)
if tc:
tc['model']['DP_attn_softmax_v2'] += time.time() - t_start
return out
def segment_norm_l1_ordered(logits, segment_ids, tc=None):
"""
segment_ids has to be ordered
logits: Tensor 1d
segment_ids: numpy.array 1d
"""
device = logits.get_device()
if device == -1:
device = torch.device('cpu')
else:
device = torch.device('cuda:{}'.format(device))
len_logits = len(segment_ids)
if tc:
t_start = time.time()
sparse_index_np = _segment_id2sparse_block_diag_matrix_coordinate(segment_ids)
if tc:
tc['model']['DP_attn_softmax_trans_matrix'] = time.time() - t_start
sparse_index = torch.LongTensor(sparse_index_np)
sparse_value = torch.ones(sparse_index_np.shape[1], dtype=torch.float)
trans_matrix_sparse_th = torch.sparse.FloatTensor(sparse_index, sparse_value,
torch.Size([len_logits, len_logits])).to(device)
norm_den = torch.squeeze(torch.sparse.mm(trans_matrix_sparse_th, logits.unsqueeze(1)))
return logits / norm_den
def segment_norm_l1(logits, segment_ids):
"""
segment_ids doesn't have to be ordered
:param logits: Tensor
:param segment_ids: 1-d numpy array
:return:
"""
device = logits.get_device()
if device == -1:
device = torch.device('cpu')
else:
device = torch.device('cuda:{}'.format(device))
N_segment = max(segment_ids) + 1
# get denominator by multiplication logits with a matrix
# get a 1-d tensor with a length of N_segment
sparse_index = torch.LongTensor(np.vstack([segment_ids, np.arange(len(segment_ids))]))
sparse_value = torch.ones(len(segment_ids), dtype=torch.float)
trans_matrix_sparse_th = torch.sparse.FloatTensor(sparse_index, sparse_value,
torch.Size([N_segment, len(segment_ids)])).to(device)
norm_den = torch.sparse.mm(trans_matrix_sparse_th, logits.unsqueeze(1)) #
sparse_index = torch.LongTensor(np.vstack([np.arange(len(segment_ids)), segment_ids]))
sparse_value = torch.ones(len(segment_ids), dtype=torch.float)
trans_matrix_sparse_th = torch.sparse.FloatTensor(sparse_index, sparse_value,
torch.Size([len(segment_ids), N_segment])).to(device)
den = torch.squeeze(torch.sparse.mm(trans_matrix_sparse_th, norm_den)) #
res = logits / den
res[res != res] = 0 #
return res
def segment_average_cal(logits, segment_ids):
"""
function: count the number of predicate of the query
:param logits: Tensor
:param segment_ids: 1-d numpy array
"""
device = logits.get_device()
if device == -1:
device = torch.device('cpu')
else:
device = torch.device('cuda:{}'.format(device))
N_segment = max(segment_ids) + 1
# get denominator by multiplication logits with a matrix
# get a 1-d tensor with a length of N_segment
sparse_index = torch.LongTensor(np.vstack([segment_ids, np.arange(len(segment_ids))]))
sparse_value = torch.ones(len(segment_ids), dtype=torch.float)
trans_matrix_sparse_th = torch.sparse.FloatTensor(sparse_index, sparse_value,
torch.Size([N_segment, len(segment_ids)])).to(device)
norm_den = torch.sparse.mm(trans_matrix_sparse_th, torch.ones_like(logits).unsqueeze(1)) # 按照query ID对函数进行求和
sparse_index = torch.LongTensor(np.vstack([np.arange(len(segment_ids)), segment_ids]))
sparse_value = torch.ones(len(segment_ids), dtype=torch.float)
trans_matrix_sparse_th = torch.sparse.FloatTensor(sparse_index, sparse_value,
torch.Size([len(segment_ids), N_segment])).to(device)
den = torch.squeeze(torch.sparse.mm(trans_matrix_sparse_th, norm_den)) #就是相当于对于query求和,然后在对按照queryID 赋值给每一项
return den
def segment_norm_l1_part(logits, logits_ids, segment_ids, tc=None):
"""
apply segment l1 norm on logits[start:]
:param logits_ids: apply l1 norm on which logits
:param logits:
:param start:
:param end:
:param segment_idx: segment indicator for logits specified by logits_ids
:param tc:
:return:
"""
device = logits.get_device()
if device == -1:
device = torch.device('cpu')
else:
device = torch.device('cuda:{}'.format(device))
len_logits = len(logits)
if tc:
t_start = time.time()
mask = segment_ids[1:] != segment_ids[:-1]
segment_start = np.concatenate([np.array([0]),
np.arange(1, len(segment_ids))[mask],
np.array([len(segment_ids)])])
sparse_index_l = []
for start, end in zip(segment_start[:-1], segment_start[1:]):
sparse_index_l += [[x, y] for x, y in product(logits_ids[start:end], repeat=2)]
sparse_index_np = np.array(sparse_index_l).T
if tc:
tc['model']['DP_attn_softmax_trans_matrix'] = time.time() - t_start
sparse_index = torch.LongTensor(sparse_index_np)
sparse_value = torch.ones(sparse_index_np.shape[1], dtype=torch.float)
trans_matrix_sparse_th = torch.sparse.FloatTensor(sparse_index, sparse_value,
torch.Size([len_logits, len_logits])).to(device)
norm_den = torch.squeeze(torch.sparse.mm(trans_matrix_sparse_th, logits.unsqueeze(1)))
res = logits / norm_den
res[res != res] = 0 # res != res inidcates where NaNs (0/0) are
return res
def segment_topk(t, segment_idx, k, sorted=False):
"""
compute topk along segments of a tensor
params:
t: Tensor, 1d, dtype=torch.float32
segment_idx: numpy.array, 1d, dtype=numpy.int32, sorted
k: k largest values
return:
values[i]: Tensor of topk of segment i
indices[i]: numpy.array of position of topk elements of segment i in original Tensor t
"""
mask = segment_idx[1:] != segment_idx[:-1]
key_idx = np.concatenate([np.array([0], dtype=np.int32),
np.arange(1, len(segment_idx))[mask],
np.array([len(segment_idx)])])
values = []
indices = []
for s, e in zip(key_idx[:-1], key_idx[1:]):
if e - s < k:
if sorted:
sorted_value, sorted_indices = torch.sort(t[s:e], descending=True)
values.append(sorted_value)
indices.append(s + sorted_indices.cpu().numpy())
else:
values.append(t[s:e])
indices.append(np.arange(s, e))
else:
segment_values, segment_indices = torch.topk(t[s:e], k, sorted=sorted)
values.append(segment_values)
indices.append(s + segment_indices.cpu().numpy())
return values, indices
def segment_rank(t, entities, target_idx_l):
"""
compute rank of ground truth (target_idx_l) in prediction according to score, i.e. t
:param t: prediction score
:param entities: 2-d numpy array, (segment_idx, entity_idx)
:param target_idx_l: 1-d numpy array, (batch_size, )
:return:
"""
mask = entities[1:, 0] != entities[:-1, 0]
key_idx = np.concatenate([np.array([0], dtype=np.int32),
np.arange(1, len(entities))[mask],
np.array([len(entities)])])
rank = []
found_mask = []
for i, (s, e) in enumerate(zip(key_idx[:-1], key_idx[1:])):
arg_target = np.nonzero(entities[s:e, 1] == target_idx_l[i])[0]
if arg_target.size > 0:
found_mask.append(True)
rank.append(torch.sum(t[s:e] > t[s:e][torch.from_numpy(arg_target)]).item() + 1)
else:
found_mask.append(False)
rank.append(1e9) # MINERVA set rank to +inf if not in path, we follow this scheme
return np.array(rank), found_mask
def segment_rank_fil(t, entities, target_idx_l, sp2o, spt2o, queries_sub, queries_pre, queries_ts,p2o=None):
"""
compute rank of ground truth (target_idx_l) in prediction according to score, i.e. t
:param sp2o:
:param t: prediction score
:param entities: 2-d numpy array, (segment_idx, entity_idx)
:param target_idx_l: 1-d numpy array, (batch_size, )
:return:
"""
mask = entities[1:, 0] != entities[:-1, 0] #
key_idx = np.concatenate([np.array([0], dtype=np.int32),
np.arange(1, len(entities))[mask],
np.array([len(entities)])]) #
rank = []
rank_fil = []
rank_fil_t = []
found_mask = [] #
for i, (s, e) in enumerate(zip(key_idx[:-1], key_idx[1:])):
arg_target = np.nonzero(entities[s:e, 1] == target_idx_l[i])[0] #
if arg_target.size > 0:
found_mask.append(True) #
sub, pre, ts = queries_sub[i], queries_pre[i], queries_ts[i]
obj_exist = sp2o[(sub, pre)] #, (sub,rel):obj
obj_exist_t = spt2o[(sub, pre, ts)] # (sub,rel,t):obj
rank_pred_com1 = torch.sum(t[s:e] > t[s:e][torch.from_numpy(arg_target)]).item()
rank_pred_com2 = torch.sum(t[s:e] == t[s:e][torch.from_numpy(arg_target)]).item()
rank.append(rank_pred_com1 + ((rank_pred_com2 - 1) / 2) + 1)
fil = [ent not in np.setdiff1d(obj_exist, [target_idx_l[i]]) for ent in entities[s:e, 1]] #
rank_pred_com1_fil = torch.sum(t[s:e][fil] > t[s:e][torch.from_numpy(arg_target)]).item()
rank_pred_com2_fil = torch.sum(t[s:e][fil] == t[s:e][torch.from_numpy(arg_target)]).item()
rank_fil.append(rank_pred_com1_fil + ((rank_pred_com2_fil - 1) / 2) + 1)
fil_t = [ent not in np.setdiff1d(obj_exist_t, [target_idx_l[i]]) for ent in entities[s:e, 1]]#
rank_pred_com1_fil_t = torch.sum(t[s:e][fil_t] > t[s:e][torch.from_numpy(arg_target)]).item()
rank_pred_com2_fil_t = torch.sum(t[s:e][fil_t] == t[s:e][torch.from_numpy(arg_target)]).item()
rank_fil_t.append(rank_pred_com1_fil_t + ((rank_pred_com2_fil_t - 1) / 2) + 1)
else:
found_mask.append(False)
rank.append(1e9) # MINERVA set rank to +inf if not in path, we follow this scheme
rank_fil.append(1e9)
return np.array(rank), found_mask, np.array(rank_fil), np.array(rank_fil_t)