-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtest_open_learning.py
52 lines (44 loc) · 1.89 KB
/
test_open_learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import open_learning
import numpy as np
import torch
def test_evaluation():
# Perfect prediction with no unseen
labels = torch.tensor([0,1,2,3,5,6])
predictions = torch.tensor([0,1,2,3,5,6])
unseen_classes = set()
reject_mask = torch.zeros(labels.size(0), dtype=torch.bool)
scores = open_learning.evaluate(labels, unseen_classes,
predictions, reject_mask)
assert scores['open_mcc'] == 0.0
assert scores['open_f1_macro'] == 1.0
# Perfect prediction and perfect rejection
labels = torch.tensor([0,1,2,3,5,6])
predictions = torch.tensor([0,1,2,3,5,6])
unseen_classes = set([5,6])
reject_mask = torch.zeros(labels.size(0), dtype=torch.bool)
reject_mask[[-1,-2]] = True # Cheatz
scores = open_learning.evaluate(labels, unseen_classes,
predictions, reject_mask)
assert scores['open_mcc'] == 1.0
assert scores['open_f1_macro'] == 1.0
# Perfect prediction but imperfect rejection
labels = torch.tensor([0,1,2,3,5,6])
predictions = torch.tensor([0,1,2,3,5,6])
unseen_classes = set([5,6])
reject_mask = torch.zeros(labels.size(0), dtype=torch.bool)
reject_mask[[0,1]] = True
print(reject_mask)
scores = open_learning.evaluate(labels, unseen_classes,
predictions, reject_mask)
assert scores['open_mcc'] < 0.0
assert scores['open_f1_macro'] < 1.0
# Imperfect prediction but perfect rejection
labels = torch.tensor([0,1,2,3,5,6])
predictions = torch.tensor([1,2,3,4,5,6])
unseen_classes = set([5,6])
reject_mask = torch.zeros(labels.size(0), dtype=torch.bool)
reject_mask[[-1,-2]] = True # Cheatz
scores = open_learning.evaluate(labels, unseen_classes,
predictions, reject_mask)
assert scores['open_mcc'] == 1.0
assert scores['open_f1_macro'] < 1.0