-
Notifications
You must be signed in to change notification settings - Fork 0
/
finetune.py
93 lines (76 loc) · 3.51 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import torch
from datasets import Dataset
from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForSeq2Seq, TrainingArguments, Trainer
import json
from peft import TaskType, get_peft_model, LoraConfig, PromptEncoderConfig, PromptEncoderReparameterizationType
MAX_LENGTH = 512
# 数据处理流程,参考GLM3仓库:https://github.com/THUDM/ChatGLM3/blob/main/finetune_chatmodel_demo/preprocess_utils
def process_func(example, tokenizer):
MAX_LENGTH = 512
input_ids, labels = [], []
instruction = tokenizer.encode(text="\n".join(["", "你是一个诚实而优秀的中国人助手。", "",
example["instruction"] + example["input"] + ""]).strip() + "\n",
add_special_tokens=True, truncation=True, max_length=MAX_LENGTH)
response = tokenizer.encode(text=example["output"], add_special_tokens=False, truncation=True, max_length=MAX_LENGTH)
input_ids = instruction + response + [tokenizer.eos_token_id]
labels = [tokenizer.pad_token_id] * len(instruction) + response + [tokenizer.eos_token_id]
pad_len = MAX_LENGTH - len(input_ids)
input_ids += [tokenizer.pad_token_id] * pad_len
labels += [tokenizer.pad_token_id] * pad_len
labels = [(l if l != tokenizer.pad_token_id else -100) for l in labels]
return {
"input_ids": input_ids,
"labels": labels
}
args = TrainingArguments(
# output_dir="./output/ChatGLM3-pt-sc2",
output_dir="./output/ChatGLM3-Lora-sc2",
per_device_train_batch_size=1,
gradient_accumulation_steps=64,
logging_steps=1,
num_train_epochs=3,
remove_unused_columns=True
)
if "__main__" == __name__:
# 加载数据
file_path = '/data/zym_proj/huan/data/self_cognition_lh.json'
with open(file_path, 'r', encoding='utf-8') as file:
data = json.load(file)
# 将JSON数据转换为Dataset对象
dataset = Dataset.from_list(data)
# 加载tokenizer
tokenizer = AutoTokenizer.from_pretrained("/data/zym_proj/huan/models/chatglm3-6b/snapshots/d3fe58f8a2c50bab217780ba8bd3ff76833d2d0c", trust_remote_code=True)
# 应用数据处理函数
processed_dataset = dataset.map(lambda example: process_func(example, tokenizer))
print("Dataset size:", len(processed_dataset))
print(processed_dataset[0])
print(processed_dataset[1])
# 创建模型
model = AutoModelForCausalLM.from_pretrained("/data/zym_proj/huan/models/chatglm3-6b/snapshots/d3fe58f8a2c50bab217780ba8bd3ff76833d2d0c", trust_remote_code=True, low_cpu_mem_usage=True)
model.to("cuda")
# 创建loRA参数
config = LoraConfig(task_type=TaskType.CAUSAL_LM, target_modules={"query_key_value"}, r=8, lora_alpha=32)
# 创建P-tuning参数
# config = PromptEncoderConfig(task_type=TaskType.CAUSAL_LM, num_virtual_tokens=10,
# encoder_reparameterization_type=PromptEncoderReparameterizationType.MLP,
# encoder_dropout=0, encoder_num_layers=5, encoder_hidden_size=1024)
# 添加adapter
model = get_peft_model(model, config)
model.print_trainable_parameters()
# 指定GLM的Data collator
data_collator = DataCollatorForSeq2Seq(
tokenizer,
model=model,
label_pad_token_id=-100,
pad_to_multiple_of=None,
padding=False
)
# 指定训练参数。
trainer = Trainer(
model=model,
args=args,
train_dataset=processed_dataset,
data_collator=data_collator,
)
# 开始训练
trainer.train()