This repository has been archived by the owner on Dec 13, 2017. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 29
/
map.c
374 lines (343 loc) · 12 KB
/
map.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "bseq.h"
#include "kvec.h"
#include "minimap.h"
#include "sdust.h"
void mm_mapopt_init(mm_mapopt_t *opt)
{
opt->radius = 500;
opt->max_gap = 10000;
opt->min_cnt = 4;
opt->min_match = 40;
opt->sdust_thres = 0;
opt->flag = MM_F_WITH_REP;
opt->merge_frac = .5;
}
/****************************
* Find approxiate mappings *
****************************/
struct mm_tbuf_s { // per-thread buffer
mm128_v mini; // query minimizers
mm128_v coef; // Hough transform coefficient
mm128_v intv; // intervals on sorted coef
uint32_v reg2mini;
uint32_v rep_aux;
sdust_buf_t *sdb;
// the following are for computing LIS
uint32_t n, m;
uint64_t *a;
size_t *b, *p;
// final output
kvec_t(mm_reg1_t) reg;
};
mm_tbuf_t *mm_tbuf_init()
{
mm_tbuf_t *b;
b = (mm_tbuf_t*)calloc(1, sizeof(mm_tbuf_t));
b->sdb = sdust_buf_init();
return b;
}
void mm_tbuf_destroy(mm_tbuf_t *b)
{
if (b == 0) return;
free(b->mini.a); free(b->coef.a); free(b->intv.a); free(b->reg.a); free(b->reg2mini.a); free(b->rep_aux.a);
free(b->a); free(b->b); free(b->p);
sdust_buf_destroy(b->sdb);
free(b);
}
#include "ksort.h"
#define sort_key_64(a) (a)
KRADIX_SORT_INIT(64, uint64_t, sort_key_64, 8)
#define lt_low32(a, b) ((uint32_t)(a) < (uint32_t)(b))
KSORT_INIT(low32lt, uint64_t, lt_low32)
#define gt_low32(a, b) ((uint32_t)(a) > (uint32_t)(b))
KSORT_INIT(low32gt, uint64_t, gt_low32)
/* TODO: drop_rep() is not robust. For all-vs-all mapping but without the -S
* flag, all minimizers have at least one hit. The _thres_ computed below will
* be highly skewed. Some improvements need to be made. */
static void drop_rep(mm_tbuf_t *b, int min_cnt)
{
int i, j, n, m;
uint32_t thres;
b->rep_aux.n = 0;
for (i = 0; i < b->mini.n; ++i)
if (b->mini.a[i].y>>32)
kv_push(uint32_t, b->rep_aux, b->mini.a[i].y>>32);
if (b->rep_aux.n < 3) return;
thres = (uint32_t)(ks_ksmall_uint32_t(b->rep_aux.n, b->rep_aux.a, b->rep_aux.n>>1) * MM_DEREP_Q50 + .499);
for (i = n = m = 0; i < b->reg.n; ++i) {
int cnt = 0, all_cnt = b->reg.a[i].cnt;
for (j = 0; j < all_cnt; ++j)
if (b->mini.a[b->reg2mini.a[m + j]].y>>32 <= thres)
++cnt;
if (cnt >= min_cnt)
b->reg.a[n++] = b->reg.a[i];
m += all_cnt;
}
// printf("%ld=>%d\t%d\n", b->reg.n, n, thres);
b->reg.n = n;
}
static void proc_intv(mm_tbuf_t *b, int which, int k, int min_cnt, int max_gap)
{
int i, j, l_lis, rid = -1, rev = 0, start = b->intv.a[which].y, end = start + b->intv.a[which].x;
// make room for arrays needed by LIS (longest increasing sequence)
if (end - start > b->m) {
b->m = end - start;
kv_roundup32(b->m);
b->a = (uint64_t*)realloc(b->a, b->m * 8);
b->b = (size_t*)realloc(b->b, b->m * sizeof(size_t));
b->p = (size_t*)realloc(b->p, b->m * sizeof(size_t));
}
// prepare the input array _a_ for LIS
b->n = 0;
for (i = start; i < end; ++i)
if (b->coef.a[i].x != UINT64_MAX)
b->a[b->n++] = b->coef.a[i].y, rid = b->coef.a[i].x << 1 >> 33, rev = b->coef.a[i].x >> 63;
if (b->n < min_cnt) return;
radix_sort_64(b->a, b->a + b->n);
// find the longest increasing sequence
l_lis = rev? ks_lis_low32gt(b->n, b->a, b->b, b->p) : ks_lis_low32lt(b->n, b->a, b->b, b->p); // LIS
if (l_lis < min_cnt) return;
for (i = 1, j = 1; i < l_lis; ++i) // squeeze out minimizaers reused in the LIS sequence
if (b->a[b->b[i]]>>32 != b->a[b->b[i-1]]>>32)
b->a[b->b[j++]] = b->a[b->b[i]];
l_lis = j;
if (l_lis < min_cnt) return;
// convert LISes to regions; possibly break an LIS at a long gaps
for (i = 1, start = 0; i <= l_lis; ++i) {
int32_t qgap = i == l_lis? 0 : ((uint32_t)b->mini.a[b->a[b->b[i]]>>32].y>>1) - ((uint32_t)b->mini.a[b->a[b->b[i-1]]>>32].y>>1);
if (i == l_lis || (qgap > max_gap && abs((int32_t)b->a[b->b[i]] - (int32_t)b->a[b->b[i-1]]) > max_gap)) {
if (i - start >= min_cnt) {
uint32_t lq = 0, lr = 0, eq = 0, er = 0, sq = 0, sr = 0;
mm_reg1_t *r;
kv_pushp(mm_reg1_t, b->reg, &r);
r->rid = rid, r->rev = rev, r->cnt = i - start, r->rep = 0;
r->qs = ((uint32_t)b->mini.a[b->a[b->b[start]]>>32].y>>1) - (k - 1);
r->qe = ((uint32_t)b->mini.a[b->a[b->b[i-1]]>>32].y>>1) + 1;
r->rs = rev? (uint32_t)b->a[b->b[i-1]] : (uint32_t)b->a[b->b[start]];
r->re = rev? (uint32_t)b->a[b->b[start]] : (uint32_t)b->a[b->b[i-1]];
r->rs -= k - 1;
r->re += 1;
for (j = start; j < i; ++j) { // count the number of times each minimizer is used
int jj = b->a[b->b[j]]>>32;
b->mini.a[jj].y += 1ULL<<32;
kv_push(uint32_t, b->reg2mini, jj); // keep minimizer<=>reg mapping for derep
}
for (j = start; j < i; ++j) { // compute ->len
uint32_t q = ((uint32_t)b->mini.a[b->a[b->b[j]]>>32].y>>1) - (k - 1);
uint32_t r = (uint32_t)b->a[b->b[j]];
r = !rev? r - (k - 1) : (0x80000000U - r);
if (r > er) lr += er - sr, sr = r, er = sr + k;
else er = r + k;
if (q > eq) lq += eq - sq, sq = q, eq = sq + k;
else eq = q + k;
}
lr += er - sr, lq += eq - sq;
r->len = lr < lq? lr : lq;
}
start = i;
}
}
}
// merge or add a Hough interval; only used by get_reg()
static inline void push_intv(mm128_v *intv, int start, int end, float merge_frac)
{
mm128_t *p;
if (intv->n > 0) { // test overlap
int last_start, last_end, min;
p = &intv->a[intv->n-1];
last_start = p->y, last_end = p->x + last_start;
min = end - start < last_end - last_start? end - start : last_end - last_start;
if (last_end > start && last_end - start > min * merge_frac) { // large overlap; then merge
p->x = end - last_start;
return;
}
}
kv_pushp(mm128_t, *intv, &p); // a new interval
p->x = end - start, p->y = start;
}
// find mapping regions from a list of minimizer hits
static void get_reg(mm_tbuf_t *b, int radius, int k, int min_cnt, int max_gap, float merge_frac, int flag)
{
const uint64_t v_kept = ~(1ULL<<31), v_dropped = 1ULL<<31;
mm128_v *c = &b->coef;
int i, j, start = 0, iso_dist = radius * 2;
if (c->n < min_cnt) return;
// drop isolated minimizer hits
if (flag&MM_F_NO_ISO) {
for (i = 0; i < c->n; ++i) c->a[i].y |= v_dropped;
for (i = 1; i < c->n; ++i) {
uint64_t x = c->a[i].x;
int32_t rpos = (uint32_t)c->a[i].y;
for (j = i - 1; j >= 0 && x - c->a[j].x < radius; --j) {
int32_t y = c->a[j].y;
if (abs(y - rpos) < iso_dist) {
c->a[i].y &= v_kept, c->a[j].y &= v_kept;
break;
}
}
}
for (i = j = 0; i < c->n; ++i) // squeeze out hits still marked as v_dropped
if ((c->a[i].y&v_dropped) == 0)
c->a[j++] = c->a[i];
c->n = j;
}
// identify (possibly overlapping) intervals within _radius_; an interval is a cluster of hits
b->intv.n = 0;
for (i = 1; i < c->n; ++i) {
if (c->a[i].x - c->a[start].x > radius) {
if (i - start >= min_cnt) push_intv(&b->intv, start, i, merge_frac);
for (++start; start < i && c->a[i].x - c->a[start].x > radius; ++start);
}
}
if (i - start >= min_cnt) push_intv(&b->intv, start, i, merge_frac);
// sort by the size of the interval
radix_sort_128x(b->intv.a, b->intv.a + b->intv.n);
// generate hits, starting from the largest interval
b->reg2mini.n = 0;
for (i = b->intv.n - 1; i >= 0; --i) proc_intv(b, i, k, min_cnt, max_gap);
// post repeat removal
if (!(flag&MM_F_WITH_REP)) drop_rep(b, min_cnt);
}
const mm_reg1_t *mm_map(const mm_idx_t *mi, int l_seq, const char *seq, int *n_regs, mm_tbuf_t *b, const mm_mapopt_t *opt, const char *name)
{
int j, n_dreg = 0, u = 0;
const uint64_t *dreg = 0;
b->mini.n = b->coef.n = 0;
mm_sketch(seq, l_seq, mi->w, mi->k, 0, &b->mini);
if (opt->sdust_thres > 0)
dreg = sdust_core((const uint8_t*)seq, l_seq, opt->sdust_thres, 64, &n_dreg, b->sdb);
for (j = 0; j < b->mini.n; ++j) {
int k, n;
const uint64_t *r;
int32_t qpos = (uint32_t)b->mini.a[j].y>>1, strand = b->mini.a[j].y&1;
b->mini.a[j].y = b->mini.a[j].y<<32>>32; // clear the rid field
if (dreg && n_dreg) { // test complexity
int s = qpos - (mi->k - 1), e = s + mi->k;
while (u < n_dreg && (uint32_t)dreg[u] <= s) ++u;
if (u < n_dreg && dreg[u]>>32 < e) {
int v, l = 0;
for (v = u; v < n_dreg && dreg[v]>>32 < e; ++v) { // iterate over LCRs overlapping this minimizer
int ss = s > dreg[v]>>32? s : dreg[v]>>32;
int ee = e < (uint32_t)dreg[v]? e : (uint32_t)dreg[v];
l += ee - ss;
}
if (l > mi->k>>1) continue;
}
}
r = mm_idx_get(mi, b->mini.a[j].x, &n);
if (n > mi->max_occ) continue;
for (k = 0; k < n; ++k) {
int32_t rpos = (uint32_t)r[k] >> 1;
mm128_t *p;
if (name && (opt->flag&MM_F_NO_SELF) && mi->name && strcmp(name, mi->name[r[k]>>32]) == 0 && rpos == qpos)
continue;
if (name && (opt->flag&MM_F_AVA) && mi->name && strcmp(name, mi->name[r[k]>>32]) > 0)
continue;
kv_pushp(mm128_t, b->coef, &p);
if ((r[k]&1) == strand) { // forward strand
p->x = (uint64_t)r[k] >> 32 << 32 | (0x80000000U + rpos - qpos);
p->y = (uint64_t)j << 32 | rpos;
} else { // reverse strand
p->x = (uint64_t)r[k] >> 32 << 32 | (rpos + qpos) | 1ULL<<63;
p->y = (uint64_t)j << 32 | rpos;
}
}
}
radix_sort_128x(b->coef.a, b->coef.a + b->coef.n);
b->reg.n = 0;
get_reg(b, opt->radius, mi->k, opt->min_cnt, opt->max_gap, opt->merge_frac, opt->flag);
*n_regs = b->reg.n;
return b->reg.a;
}
/**************************
* Multi-threaded mapping *
**************************/
void kt_for(int n_threads, void (*func)(void*,long,int), void *data, long n);
void kt_pipeline(int n_threads, void *(*func)(void*, int, void*), void *shared_data, int n_steps);
typedef struct {
int batch_size, n_processed, n_threads;
const mm_mapopt_t *opt;
bseq_file_t *fp;
const mm_idx_t *mi;
} pipeline_t;
typedef struct {
const pipeline_t *p;
int n_seq;
bseq1_t *seq;
int *n_reg;
mm_reg1_t **reg;
mm_tbuf_t **buf;
} step_t;
static void worker_for(void *_data, long i, int tid) // kt_for() callback
{
step_t *step = (step_t*)_data;
const mm_reg1_t *regs;
int n_regs;
regs = mm_map(step->p->mi, step->seq[i].l_seq, step->seq[i].seq, &n_regs, step->buf[tid], step->p->opt, step->seq[i].name);
step->n_reg[i] = n_regs;
if (n_regs > 0) {
step->reg[i] = (mm_reg1_t*)malloc(n_regs * sizeof(mm_reg1_t));
memcpy(step->reg[i], regs, n_regs * sizeof(mm_reg1_t));
}
}
static void *worker_pipeline(void *shared, int step, void *in)
{
int i, j;
pipeline_t *p = (pipeline_t*)shared;
if (step == 0) { // step 0: read sequences
step_t *s;
s = (step_t*)calloc(1, sizeof(step_t));
s->seq = bseq_read(p->fp, p->batch_size, &s->n_seq);
if (s->seq) {
s->p = p;
for (i = 0; i < s->n_seq; ++i)
s->seq[i].rid = p->n_processed++;
s->buf = (mm_tbuf_t**)calloc(p->n_threads, sizeof(mm_tbuf_t*));
for (i = 0; i < p->n_threads; ++i)
s->buf[i] = mm_tbuf_init();
s->n_reg = (int*)calloc(s->n_seq, sizeof(int));
s->reg = (mm_reg1_t**)calloc(s->n_seq, sizeof(mm_reg1_t*));
return s;
} else free(s);
} else if (step == 1) { // step 1: map
kt_for(p->n_threads, worker_for, in, ((step_t*)in)->n_seq);
return in;
} else if (step == 2) { // step 2: output
step_t *s = (step_t*)in;
const mm_idx_t *mi = p->mi;
for (i = 0; i < p->n_threads; ++i) mm_tbuf_destroy(s->buf[i]);
free(s->buf);
for (i = 0; i < s->n_seq; ++i) {
bseq1_t *t = &s->seq[i];
for (j = 0; j < s->n_reg[i]; ++j) {
mm_reg1_t *r = &s->reg[i][j];
if (r->len < p->opt->min_match) continue;
printf("%s\t%d\t%d\t%d\t%c\t", t->name, t->l_seq, r->qs, r->qe, "+-"[r->rev]);
if (mi->name) fputs(mi->name[r->rid], stdout);
else printf("%d", r->rid + 1);
printf("\t%d\t%d\t%d\t%d\t%d\t255\tcm:i:%d\n", mi->len[r->rid], r->rs, r->re, r->len,
r->re - r->rs > r->qe - r->qs? r->re - r->rs : r->qe - r->qs, r->cnt);
}
free(s->reg[i]);
free(s->seq[i].seq); free(s->seq[i].name);
}
free(s->reg); free(s->n_reg); free(s->seq);
free(s);
}
return 0;
}
int mm_map_file(const mm_idx_t *idx, const char *fn, const mm_mapopt_t *opt, int n_threads, int tbatch_size)
{
pipeline_t pl;
memset(&pl, 0, sizeof(pipeline_t));
pl.fp = bseq_open(fn);
if (pl.fp == 0) return -1;
pl.opt = opt, pl.mi = idx;
pl.n_threads = n_threads, pl.batch_size = tbatch_size;
kt_pipeline(n_threads == 1? 1 : 2, worker_pipeline, &pl, 3);
bseq_close(pl.fp);
return 0;
}