-
Notifications
You must be signed in to change notification settings - Fork 38
/
demo_MLSD_flask.py
293 lines (219 loc) · 10 KB
/
demo_MLSD_flask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
'''
modified by lihaoweicv
pytorch version
'''
'''
M-LSD
Copyright 2021-present NAVER Corp.
Apache License v2.0
'''
# for demo
import os
from flask import Flask, request, session, json, Response, render_template, abort, send_from_directory
import requests
from urllib.request import urlopen
from io import BytesIO
import uuid
import cv2
import time
import argparse
import numpy as np
from PIL import Image
import torch
# for square detector
from utils import pred_squares
from models.mbv2_mlsd_tiny import MobileV2_MLSD_Tiny
from models.mbv2_mlsd_large import MobileV2_MLSD_Large
os.environ['CUDA_VISIBLE_DEVICES'] = '0' # CPU mode
# flask
current_dir = os.path.dirname(__file__)
if current_dir == "":
current_dir = "./"
app = Flask(__name__, template_folder=current_dir+ '/templates/')
logger = app.logger
logger.info('init demo app')
# config
parser = argparse.ArgumentParser()
## model parameters
parser.add_argument('--model_type', default='large', type=str)
parser.add_argument('--model_dir', default='./models/', type=str)
parser.add_argument('--input_size', default=512, type=int,
help='The size of input images.')
## LSD parameter
parser.add_argument('--score_thr', default=0.10, type=float,
help='Discard center points when the score < score_thr.')
## intersection point parameters
parser.add_argument('--outside_ratio', default=0.10, type=float,
help='''Discard an intersection point
when it is located outside a line segment farther than line_length * outside_ratio.''')
parser.add_argument('--inside_ratio', default=0.50, type=float,
help='''Discard an intersection point
when it is located inside a line segment farther than line_length * inside_ratio.''')
## ranking boxes parameters
parser.add_argument('--w_overlap', default=0.0, type=float,
help='''When increasing w_overlap, the final box tends to overlap with
the detected line segments as much as possible.''')
parser.add_argument('--w_degree', default=1.14, type=float,
help='''When increasing w_degree, the final box tends to be
a parallel quadrilateral with reference to the angle of the box.''')
parser.add_argument('--w_length', default=0.03, type=float,
help='''When increasing w_length, the final box tends to be
a parallel quadrilateral with reference to the length of the box.''')
parser.add_argument('--w_area', default=1.84, type=float,
help='When increasing w_area, the final box tends to be the largest one out of candidates.')
parser.add_argument('--w_center', default=1.46, type=float,
help='When increasing w_center, the final box tends to be located in the center of input image.')
## flask demo parameter
parser.add_argument('--port', default=5000, type=int,
help='flask demo will be running on http://0.0.0.0:port/')
class model_graph:
def __init__(self, args):
self.model = self.load(args.model_dir, args.model_type)
self.params = {'score': args.score_thr,'outside_ratio': args.outside_ratio,'inside_ratio': args.inside_ratio,
'w_overlap': args.w_overlap,'w_degree': args.w_degree,'w_length': args.w_length,
'w_area': args.w_area,'w_center': args.w_center}
self.args = args
def load(self, model_dir, mode_type):
model_path = model_dir +"/mlsd_tiny_512_fp32.pth"
if mode_type == 'large':
model_path = model_dir +"/mlsd_large_512_fp32.pth"
torch_model = MobileV2_MLSD_Large().cuda().eval()
else:
torch_model = MobileV2_MLSD_Tiny().cuda().eval()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
torch_model.load_state_dict(torch.load(model_path, map_location=device), strict=True)
self.torch_model = torch_model
return torch_model
def pred(self, image):
segments, squares, score_array, inter_points = pred_squares(image, self.torch_model,
[self.args.input_size, self.args.input_size],
params=self.params)
output = {}
output['segments'] = segments
output['squares'] = squares
output['scores'] = score_array
output['inter_points'] = inter_points
return output
def read_image(self, image_url):
response = requests.get(image_url, stream=True)
image = np.asarray(Image.open(BytesIO(response.content)).convert('RGB'))
max_len = 1024
h, w, _ = image.shape
org_shape = [h, w]
max_idx = np.argmax(org_shape)
max_val = org_shape[max_idx]
if max_val > max_len:
min_idx = (max_idx + 1) % 2
ratio = max_len / max_val
new_min = org_shape[min_idx] * ratio
new_shape = [0, 0]
new_shape[max_idx] = 1024
new_shape[min_idx] = new_min
image = cv2.resize(image, (int(new_shape[1]), int(new_shape[0])), interpolation=cv2.INTER_AREA)
return image
def init_resize_image(self, im, maximum_size=1024):
h, w, _ = im.shape
size = [h, w]
max_arg = np.argmax(size)
max_len = size[max_arg]
min_arg = max_arg - 1
min_len = size[min_arg]
if max_len < maximum_size:
return im
else:
ratio = maximum_size / max_len
max_len = max_len * ratio
min_len = min_len * ratio
size[max_arg] = int(max_len)
size[min_arg] = int(min_len)
im = cv2.resize(im, (size[1], size[0]), interpolation = cv2.INTER_AREA)
return im
def decode_image(self, session_id, rawimg):
dirpath = os.path.join('static/results', session_id)
if not os.path.exists(dirpath):
os.makedirs(dirpath)
save_path = os.path.join(dirpath, 'input.png')
input_image_url = os.path.join(dirpath, 'input.png')
img = cv2.imdecode(np.frombuffer(rawimg, dtype='uint8'), 1)[:,:,::-1]
img = self.init_resize_image(img)
cv2.imwrite(save_path, img[:,:,::-1])
return img, input_image_url
def draw_output(self, image, output, save_path='test.png'):
color_dict = {'red': [255, 0, 0],
'green': [0, 255, 0],
'blue': [0, 0, 255],
'cyan': [0, 255, 255],
'black': [0, 0, 0],
'yellow': [255, 255, 0],
'dark_yellow': [200, 200, 0]}
line_image = image.copy()
square_image = image.copy()
square_candidate_image = image.copy()
line_thick = 5
# output > line array
for line in output['segments']:
x_start, y_start, x_end, y_end = [int(val) for val in line]
cv2.line(line_image, (x_start, y_start), (x_end, y_end), color_dict['red'], line_thick)
inter_image = line_image.copy()
for pt in output['inter_points']:
x, y = [int(val) for val in pt]
cv2.circle(inter_image, (x, y), 10, color_dict['blue'], -1)
for square in output['squares']:
cv2.polylines(square_candidate_image, [square.reshape([-1, 1, 2])], True, color_dict['dark_yellow'], line_thick)
for square in output['squares'][0:1]:
cv2.polylines(square_image, [square.reshape([-1, 1, 2])], True, color_dict['yellow'], line_thick)
for pt in square:
cv2.circle(square_image, (int(pt[0]), int(pt[1])), 10, color_dict['cyan'], -1)
'''
square image | square candidates image
inter image | line image
'''
output_image = self.init_resize_image(square_image, 512)
output_image = np.concatenate([output_image, self.init_resize_image(square_candidate_image, 512)], axis=1)
output_image_tmp = np.concatenate([self.init_resize_image(inter_image, 512), self.init_resize_image(line_image, 512)], axis=1)
output_image = np.concatenate([output_image, output_image_tmp], axis=0)
cv2.imwrite(save_path, output_image[:,:,::-1])
return output_image
def save_output(self, session_id, input_image_url, image, output):
dirpath = os.path.join('static/results', session_id)
if not os.path.exists(dirpath):
os.makedirs(dirpath)
save_path = os.path.join(dirpath, 'output.png')
self.draw_output(image, output, save_path=save_path)
output_image_url = os.path.join(dirpath, 'output.png')
rst = {}
rst['input_image_url'] = input_image_url
rst['session_id'] = session_id
rst['output_image_url'] = output_image_url
with open(os.path.join(dirpath, 'results.json'), 'w') as f:
json.dump(rst, f)
def init_worker(args):
global model
model = model_graph(args)
@app.route('/')
def index():
return render_template('index_scan.html', session_id='dummy_session_id')
@app.route('/', methods=['POST'])
def index_post():
request_start = time.time()
configs = request.form
session_id = str(uuid.uuid1())
image_url = configs['image_url'] # image_url
if len(image_url) == 0:
bio = BytesIO()
request.files['image'].save(bio)
rawimg = bio.getvalue()
image, image_url = model.decode_image(session_id, rawimg)
else:
image = model.read_image(image_url)
output = model.pred(image)
model.save_output(session_id, image_url, image, output)
return render_template('index_scan.html', session_id=session_id)
@app.route('/favicon.ico')
def favicon():
return send_from_directory(os.path.join(app.root_path, 'static'),
'favicon.ico', mimetype='image/vnd.microsoft.icon')
if __name__ == '__main__':
args = parser.parse_args()
init_worker(args)
app.run(host='0.0.0.0', port=args.port)