-
Notifications
You must be signed in to change notification settings - Fork 0
/
learning_rates.py
70 lines (61 loc) · 2.9 KB
/
learning_rates.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# coding=utf-8
"""PyTorch DataLoader for TFRecords"""
import torch
from torch.optim.lr_scheduler import _LRScheduler
import math
class AnnealingLR(_LRScheduler):
"""Anneals the learning rate from start to zero along a cosine curve."""
DECAY_STYLES = ['linear', 'cosine', 'exponential', 'constant', 'None', 'noam']
def __init__(self, optimizer, start_lr, warmup_iter, num_iters, decay_style=None, last_iter=-1, gradient_accumulation_steps=1):
self.optimizer = optimizer
self.start_lr = start_lr
self.warmup_iter = (warmup_iter // gradient_accumulation_steps) + 1
self.num_iters = last_iter + 1
self.end_iter = num_iters
self.gradient_accumulation_steps = gradient_accumulation_steps
self.decay_style = decay_style.lower() if isinstance(decay_style, str) else None
self.step(self.num_iters)
if torch.distributed.get_rank() == 0:
print('learning rate decaying', decay_style)
def get_lr(self):
# https://openreview.net/pdf?id=BJYwwY9ll pg. 4
if self.warmup_iter > 0 and self.num_iters <= self.warmup_iter:
if self.decay_style != self.DECAY_STYLES[5]:
return float(self.start_lr) * self.num_iters / self.warmup_iter
else:
return float(self.start_lr) / math.sqrt(self.warmup_iter) * self.num_iters / self.warmup_iter #* self.num_iters / self.warmup_iter / math.sqrt(self.warmup_iter)
else:
if self.decay_style == self.DECAY_STYLES[0]:
return self.start_lr*((self.end_iter-(self.num_iters-self.warmup_iter))/self.end_iter)
elif self.decay_style == self.DECAY_STYLES[1]:
return self.start_lr / 2.0 * (math.cos(math.pi * (self.num_iters - self.warmup_iter) / self.end_iter) + 1)
elif self.decay_style == self.DECAY_STYLES[2]:
#TODO: implement exponential decay
return self.start_lr
elif self.decay_style == self.DECAY_STYLES[5]:
return self.start_lr / math.sqrt(self.num_iters + 1)
else:
return self.start_lr
def step(self, step_num=None):
if step_num is None:
step_num = self.num_iters + 1
self.num_iters = step_num
new_lr = self.get_lr()
for group in self.optimizer.param_groups:
group['lr'] = new_lr
def state_dict(self):
sd = {
'start_lr': self.start_lr,
'warmup_iter': self.warmup_iter,
'num_iters': self.num_iters,
'decay_style': self.decay_style,
'end_iter': self.end_iter
}
return sd
def load_state_dict(self, sd):
self.start_lr = sd['start_lr']
self.warmup_iter = sd['warmup_iter']
self.num_iters = sd['num_iters']
self.end_iter = sd['end_iter']
self.decay_style = sd['decay_style']
self.step(self.num_iters)