-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
399 lines (301 loc) · 15.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
# coding=utf-8
"""Training Enc-Dec"""
import os
import torch
import json
import shutil
from sklearn.metrics import f1_score
from arguments import get_args
from tokenization_t5 import EncDecTokenizer
import mpu
from utils import save_checkpoint
from utils import print_args
from utils import print_rank_0, save_rank_0
from utils import setup_model_and_optimizer, set_random_seed, initialize_distributed
from samplers import DistributedBatchSampler, RandomSampler
from data_utils import *
from torch.utils.data import DataLoader, SequentialSampler
def forward_step(args, model_batch, no_model_batch, model, device, keep_enc_hidden=False, do_infer=False):
for k in model_batch:
model_batch[k] = model_batch[k].to(device)
for k in no_model_batch:
no_model_batch[k] = no_model_batch[k].to(device)
if keep_enc_hidden:
enc_outputs = model(**model_batch, only_encoder=True)
enc_hidden_states = enc_outputs["encoder_last_hidden_state"]
output = model(**model_batch, enc_hidden_states=enc_hidden_states)
else:
output = model(**model_batch)
logits = output["lm_logits"]
forw_out = {
"logits": logits
}
if keep_enc_hidden:
forw_out["enc_hidden_states"] = enc_hidden_states
if not do_infer:
losses = mpu.vocab_parallel_cross_entropy(logits.contiguous().float(), no_model_batch["labels"])
loss_mask = no_model_batch["loss_mask"]
losses = (losses * loss_mask).sum(-1) / loss_mask.sum(-1)
loss = losses.mean()
forw_out["loss"] = loss
forw_out["loss_batch"] = losses
return forw_out
def backward_step(args, loss, model, optimizer):
# backward
if args.deepspeed:
model.backward(loss)
else:
optimizer.zero_grad()
if args.fp16:
optimizer.backward(loss, update_master_grads=False)
else:
loss.backward()
# Update master gradients.
if not args.deepspeed:
if args.fp16:
optimizer.update_master_grads()
# Clipping gradients helps prevent the exploding gradient.
if args.clip_grad > 0:
if not args.fp16:
mpu.clip_grad_norm(model.parameters(), args.clip_grad)
else:
optimizer.clip_master_grads(args.clip_grad)
def train(args, tokenizer, model, optimizer, lr_scheduler,
train_dataset, train_dataloader, dev_dataset, dev_dataloader, eval_dataset, eval_dataloader, device, random_sampler: RandomSampler, prompt_config):
"""Train the model."""
if torch.distributed.get_rank() == 0:
print("Train the model")
# Turn on training mode which enables dropout.
model.train()
# Tracking loss.
total_loss = 0.0
step, global_step = 1, 1
best_accs = []
for e in range(args.epochs):
model.train()
random_sampler.set_epoch(e)
for model_batch, no_model_batch in train_dataloader:
forw_out = forward_step(args, model_batch, no_model_batch, model, device)
loss = forw_out["loss"]
if torch.distributed.get_rank() == 0:
print(loss)
backward_step(args, loss, model, optimizer)
# Update losses.
total_loss += loss.item()
if args.deepspeed:
model.step()
else:
optimizer.step()
if not (args.fp16 and optimizer.overflow):
lr_scheduler.step()
# Logging.
if global_step % args.log_interval == 0 and step % args.gradient_accumulation_steps == 0:
learning_rate = optimizer.param_groups[0]["lr"]
avg_lm_loss = total_loss / (args.log_interval * args.gradient_accumulation_steps)
log_string = "epoch {:3d}/{:3d} |".format(e, args.epochs)
log_string += " global iteration {:8d}/{:8d} |".format(global_step, args.train_iters)
log_string += " learning rate {:.3} |".format(learning_rate)
log_string += " lm loss {:.6} |".format(avg_lm_loss)
if args.fp16:
log_string += " loss scale {:.1f} |".format(optimizer.cur_scale if args.deepspeed else optimizer.loss_scale)
print_rank_0(log_string)
save_rank_0(args, log_string)
total_loss = 0.0
# Checkpointing
if args.save and args.save_interval and global_step % args.save_interval == 0 and step % args.gradient_accumulation_steps == 0:
save_checkpoint(global_step, model, optimizer, lr_scheduler, args)
# Evaluation
if args.eval_interval and global_step % args.eval_interval == 0 and step % args.gradient_accumulation_steps == 0 and args.do_valid:
prefix = "iteration {} | ".format(global_step)
dev_loss, dev_acc = evaluate(args, tokenizer, dev_dataset, dev_dataloader, model, device, prompt_config, mode="dev", save_res=True)
log_string = prefix + " dev_loss: " + str(dev_loss) + " | dev acc(mrr, f1): " + str(dev_acc)
if args.do_eval_while_valid:
eval_loss, eval_acc = evaluate(args, tokenizer, eval_dataset, eval_dataloader, model, device, prompt_config, mode="test", save_res=True)
log_string = log_string + " | eval_loss: " + str(eval_loss) + " | eval acc(mrr, f1): " + str(eval_acc)
print_rank_0(log_string)
save_rank_0(args, log_string)
model.train()
if args.max_save > 0:
i = 0
if isinstance(dev_acc, list): # adapt for cb, whose return value is a list: [acc, f1]
dev_acc = dev_acc[0]
while i < len(best_accs):
if best_accs[i][1] < dev_acc:
break
i += 1
if len(best_accs) < args.max_save or i < len(best_accs):
best_accs.insert(i, (global_step, dev_acc))
if len(best_accs) > args.max_save:
step_to_be_rm, acc_to_be_rm = best_accs[-1]
if torch.distributed.get_rank() == 0:
shutil.rmtree(os.path.join(args.save, "acc_{}_{:.3}".format(step_to_be_rm, acc_to_be_rm)))
save_checkpoint(global_step, model, optimizer, lr_scheduler, args, save_dir=os.path.join(args.save, "acc_{}_{:.3}".format(global_step, dev_acc)))
best_accs = best_accs[:args.max_save]
step += 1
if step % args.gradient_accumulation_steps == 0:
global_step += 1
return global_step
def evaluate(args, tokenizer: EncDecTokenizer, eval_dataset: EncDecDataset, eval_data_loader, model, device, prompt_config, mode="dev", save_res=False):
"""Evaluation."""
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0.0
step = 0
all_idx = []
all_preds = []
all_labels = []
with torch.no_grad():
for model_batch, no_model_batch in eval_data_loader:
forw_out = forward_step(args, model_batch, no_model_batch, model, device, do_infer=(mode=="infer"))
loss = forw_out["loss"].item() if "loss" in forw_out else 0
total_loss += loss
logits_list = [torch.zeros_like(forw_out["logits"]) for _ in range(mpu.get_model_parallel_world_size())]
torch.distributed.all_gather(logits_list, forw_out["logits"], mpu.get_model_parallel_group())
gathered_logits = torch.cat(logits_list, dim=-1)
pred_token_logits = gathered_logits[:, 1, :]
preds = torch.argmax(pred_token_logits, dim=-1)
gathered_preds = [torch.zeros_like(preds) for _ in range(mpu.get_data_parallel_world_size())]
torch.distributed.all_gather(gathered_preds, preds.contiguous(), mpu.get_data_parallel_group())
all_preds.extend(gathered_preds)
gathered_idx = [torch.zeros_like(no_model_batch["idx"]) for _ in range(mpu.get_data_parallel_world_size())]
torch.distributed.all_gather(gathered_idx, no_model_batch["idx"].contiguous(), mpu.get_data_parallel_group())
all_idx.extend(gathered_idx)
labels = no_model_batch["labels"][:, 1]
gathered_labels = [torch.zeros_like(labels) for _ in range(mpu.get_data_parallel_world_size())]
torch.distributed.all_gather(gathered_labels, labels.contiguous(), mpu.get_data_parallel_group())
all_labels.extend(gathered_labels)
step += 1
total_loss /= step
all_idx = torch.cat(all_idx, dim=0).cpu().tolist()
all_preds = torch.cat(all_preds, dim=0).cpu().tolist()
all_labels = torch.cat(all_labels, dim=0).cpu().tolist()
if args.data_name in ["cb", "cb_uni"]:
eval_metric = acc_f1_metric
else:
eval_metric = acc_metric
res = eval_metric(args, tokenizer, all_preds, all_labels, save_res=save_res)
return total_loss, res
def acc_metric(args, tokenizer: EncDecTokenizer, all_preds, all_labels, save_res=False):
acc = sum([int(p == l) for p, l in zip(all_preds, all_labels)]) / len(all_preds)
if save_res:
with open(os.path.join(args.save, "{}.txt".format(acc)), "w") as f:
for p, l in zip(all_preds, all_labels):
f.write(str(p) + "\t\t" + str(l) + "\n")
if isinstance(p, list):
f.write(tokenizer.decode(p) + "\t\t" + tokenizer.decode(l) + "\n")
f.write("\n")
return acc
def acc_f1_metric(args, tokenizer: EncDecTokenizer, all_preds, all_labels, save_res=False):
f1_macro = f1_score(all_labels, all_preds, average="macro")
acc = sum([int(p == l) for p, l in zip(all_preds, all_labels)]) / len(all_preds)
if save_res:
with open(os.path.join(args.save, "{}.txt".format(f1_macro)), "w") as f:
for p, l in zip(all_preds, all_labels):
f.write(str(p) + "\t\t" + str(l) + "\n")
if isinstance(p, list):
f.write(tokenizer.decode(p) + "\t\t" + tokenizer.decode(l) + "\n")
f.write("\n")
return [acc, f1_macro]
def load_data(args, data_type, tokenizer, prompt_config=None, ratio=1, num=-1, drop_last=True, do_infer=False):
data_path = os.path.join(args.data_path, data_type + args.data_ext)
# Data parallel arguments.
world_size = mpu.get_data_parallel_world_size()
rank = mpu.get_data_parallel_rank()
if args.dev_batch_size is None:
args.dev_batch_size = args.batch_size
if args.eval_batch_size is None:
args.eval_batch_size = args.batch_size
if data_type == "train":
global_batch_size = args.batch_size * world_size
elif data_type == "valid":
global_batch_size = args.dev_batch_size * world_size
else:
global_batch_size = args.eval_batch_size * world_size
num_workers = args.num_workers
dataset = DATA_CONFIG[args.data_name]["dataset"](
args,
tokenizer,
data_path,
data_type,
ratio=ratio,
num=num,
prefix=args.data_prefix,
do_infer=do_infer,
prompt_config=prompt_config)
if data_type == "train":
sampler = RandomSampler(dataset)
sampler.set_seed(args.seed)
else:
sampler = SequentialSampler(dataset)
batch_sampler = DistributedBatchSampler(sampler=sampler,
batch_size=global_batch_size,
drop_last=drop_last,
rank=rank,
world_size=world_size)
data_loader = DataLoader(dataset,
batch_sampler=batch_sampler,
num_workers=num_workers,
pin_memory=True,
collate_fn=dataset.collate)
# Torch dataloader.
return data_loader, dataset, sampler
def main():
"""Main training program."""
# Disable CuDNN.
torch.backends.cudnn.enabled = False
# Arguments.
args = get_args()
os.makedirs(args.save, exist_ok=True)
# Pytorch distributed.
initialize_distributed(args)
if torch.distributed.get_rank() == 0:
print("Training Enc-Dec model")
print_args(args)
with open(os.path.join(args.save, "args.json"), "w") as f:
json.dump(vars(args), f)
# Random seeds for reproducability.
set_random_seed(args.seed)
device = torch.cuda.current_device()
# setup tokenizer
tokenizer = EncDecTokenizer(os.path.join(args.tokenizer_path, "spiece.model"))
with open(args.deepspeed_config, "r") as f:
ds_config = json.load(f)
ds_config["gradient_accumulation_steps"] = args.gradient_accumulation_steps
ds_config["train_micro_batch_size_per_gpu"] = args.batch_size
prompt_config = None
if args.prompt_tune:
with open(args.prompt_config, "r") as f:
prompt_config = json.load(f)
if args.load_prompt is not None:
prompt_config["load_prompt"] = args.load_prompt
for t in ["enc", "dec"]:
prompt_config[t]["init_ids"] = tokenizer.encode(prompt_config[t]["init_tokens"])
pad_num = prompt_config[t]["prompt_len"] - len(prompt_config[t]["init_ids"])
prompt_config[t]["init_ids"].extend(tokenizer.convert_tokens_to_ids([prompt_config[t]["default_init_token"] for _ in range(pad_num)]))
prompt_config[t]["init_ids"] = torch.tensor(prompt_config[t]["init_ids"], dtype=torch.long).to(device)
if args.do_train:
train_dataloader, train_dataset, random_sampler = load_data(args, "train", tokenizer, prompt_config, ratio=args.train_ratio, num=args.train_num)
dev_dataloader, dev_dataset, _ = load_data(args, "valid", tokenizer, prompt_config, ratio=args.dev_ratio, num=args.dev_num)
if args.do_eval_while_valid:
eval_dataloader, eval_dataset, _ = load_data(args, "test", tokenizer, prompt_config, ratio=args.test_ratio, num=args.test_num)
else:
eval_dataloader, eval_dataset = None, None
if args.train_iters == -1:
args.train_iters = len(train_dataset) * args.epochs // (mpu.get_data_parallel_world_size() * args.batch_size * args.gradient_accumulation_steps)
else:
args.train_iters = 10 # a magic number
log_string = "Total train epochs {} | Total train iters {} | ".format(args.epochs, args.train_iters)
print_rank_0(log_string)
save_rank_0(args, log_string)
# Model, optimizer, and learning rate.
model, optimizer, lr_scheduler = setup_model_and_optimizer(args, tokenizer.vocab_size, ds_config, prompt_config)
if args.do_train:
train(args, tokenizer, model, optimizer, lr_scheduler, train_dataset, train_dataloader, dev_dataset, dev_dataloader, eval_dataset, eval_dataloader, device, random_sampler, prompt_config)
if args.do_eval:
eval_dataloader, eval_dataset, _ = load_data(args, "test", tokenizer, prompt_config, ratio=args.test_ratio, num=args.test_num)
loss, acc = evaluate(args, tokenizer, eval_dataset, eval_dataloader, model, device, prompt_config, mode="test")
log_string = "Eval result: loss: {:.6} | acc(mrr): {}".format(loss, acc)
print_rank_0(log_string)
save_rank_0(args, log_string)
if __name__ == "__main__":
main()