-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_pod4_lord_II.py
500 lines (415 loc) · 18.2 KB
/
train_pod4_lord_II.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
"""
======================================================================
Train new LoRD-II function.
Author: Zi Liang <zi1415926.liang@connect.polyu.hk>
Copyright © 2024, ZiLiang, all rights reserved.
Created: 2 April 2024
======================================================================
"""
# ------------------------ Code --------------------------------------
import torch
# import json
from torch.utils.tensorboard import SummaryWriter
# from torch.distributions import Categorical
from torch.utils.data import TensorDataset, DataLoader
from tqdm import tqdm
import math
import time
from sequence_utils import my_padding, my_padding_logits
from sequence_utils import my_padding_token_dist
from sequence_utils import my_padding_logit
import torch.nn.functional as F
import random
from rlhf_train import clip, log_clip
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
print = logger.info
def random_take(num, ls, seed,):
random.seed(seed)
random.shuffle(ls)
if num >= len(ls):
return ls
return ls[:num]
def train(lm, lm_tokenizer, args,
raw_train_datals, max_new_tokens=16):
sub_stage_num = args.sub_stage_num
steps = sub_stage_num*args.sub_set_num *\
args.period_num
print(f"OVERALL STEPS: {steps}.")
p_i2ls = None
pmask2s = None
p_logits2ls = None
p_vic_logits2ls = None
for ssn in range(sub_stage_num):
lm = train_pod(lm, lm_tokenizer,
args, raw_train_datals,
max_new_tokens,
)
if (ssn+1) % 3 == 0:
print(f" -->NOW save the ckpt in stage {ssn}.")
lm_tokenizer.save_pretrained(args.save_path +
"___period"+str(ssn))
lm.save_pretrained(args.save_path +
"___period"+str(ssn))
def train_pod(lm,
lm_tokenizer,
args, raw_train_datals,
max_new_tokens,
):
print(">>>> DATA PREPERATION")
tau1 = args.tau1
tau2 = args.tau2
print(f" Tau1: {tau1}\t Tau2: {tau2}.")
# STEP 1: DATA Preperation.
ITER_num = args.period_num
tb_writer = SummaryWriter(log_dir=args.save_path+"___log_writer")
op_ls, oidx2ls, ologits2ls, oidx2_dist = raw_train_datals
subset_num = args.sub_set_num
# 1. in every period, random take a subset.
seed = time.time()
p_ls = random_take(subset_num, op_ls, seed,)
idx2ls = random_take(subset_num, oidx2ls, seed)
if ologits2ls is not None:
vic_logits2ls = random_take(subset_num, ologits2ls, seed)
idx2_dist = random_take(subset_num, oidx2_dist, seed)
else:
vic_logits2ls = [None for _ in range(subset_num)]
idx2_dist = [None for _ in range(subset_num)]
for iter_idx in range(ITER_num):
tensorboard_name = f"Period {iter_idx}"
idxs11_ls = []
idxs12_ls = []
old_logits11_ls = []
old_logits12_ls = []
old_logits2_ls = []
# 2. generate
with torch.no_grad():
for i, prompt in tqdm(enumerate(p_ls),
desc="Data Collecting..."):
prompt = prompt.to(args.device).unsqueeze(0)
# Generate New Tokens
idxs12 = lm.generate(prompt,
do_sample=True,
max_length=args.max_length,
max_new_tokens=max_new_tokens,
# temperature=args.temperature,
)
idxs11 = lm.generate(prompt,
do_sample=True,
max_length=args.max_length,
max_new_tokens=max_new_tokens,
# temperature=args.temperature,
)
bs, sqqql = idxs11.shape
# print(idxs1)
print(f"idxs11 {lm_tokenizer.decode(idxs11[0])}")
print(f"idxs12 {lm_tokenizer.decode(idxs12[0])}")
old_logits11 = lm(idxs11[:, :-1]).logits
old_logits11 = F.log_softmax(old_logits11, dim=-1)
old_logits11 = old_logits11[
torch.arange(1).unsqueeze(1),
torch.arange(sqqql-1).unsqueeze(0),
idxs11[:, 1:sqqql]
]
bs, sqqql2 = idxs12.shape
old_logits12 = lm(idxs12[:, :-1]).logits
old_logits12 = F.log_softmax(old_logits12, dim=-1)
old_logits12 = old_logits12[
torch.arange(1).unsqueeze(1),
torch.arange(sqqql2-1).unsqueeze(0),
idxs12[:, 1:sqqql2]
]
idxs2 = torch.tensor(idx2ls[i], dtype=torch.long)\
.to(args.device).unsqueeze(0)
print(f"idxs2 {lm_tokenizer.decode(idxs2[0])}")
old_logits2 = lm(idxs2[:, :-1]).logits
old_logits2 = F.log_softmax(old_logits2, dim=-1)
bs, sql2 = idxs2.shape
old_logits2 = old_logits2[
torch.arange(1).unsqueeze(1),
torch.arange(sql2-1).unsqueeze(0),
idxs2[:, 1:sql2]
]
idxs11_ls.append(idxs11.squeeze(0).to("cpu"))
idxs12_ls.append(idxs12.squeeze(0).to("cpu"))
old_logits11_ls.append(old_logits11
.squeeze(0).to("cpu"))
old_logits12_ls.append(old_logits12
.squeeze(0).to("cpu"))
old_logits2_ls.append(old_logits2.squeeze(0).to("cpu"))
cmax_token_num_2 = min(args.max_length,
max([len(x) for x in idx2ls]))
cmax_token_num_11 = min(args.max_length,
max([len(x) for x in idxs11_ls]))
cmax_token_num_12 = min(args.max_length,
max([len(x) for x in idxs12_ls]))
max_token_num = max(cmax_token_num_2, cmax_token_num_11)
max_token_num = max(max_token_num, cmax_token_num_12)
print(f"max_token_num: {max_token_num}")
pad_idx = lm_tokenizer.pad_token_id
idx2ls, mask2 = my_padding(idx2ls, p_ls,
max_token_num, pad_idx)
idxs11_ls, mask11 = my_padding(idxs11_ls,
p_ls, max_token_num, pad_idx)
idxs12_ls, mask12 = my_padding(idxs12_ls,
p_ls, max_token_num, pad_idx)
old_logits11_ls = my_padding_logit(old_logits11_ls,
max_token_num-1, pad_idx)
old_logits12_ls = my_padding_logit(old_logits12_ls,
max_token_num-1, pad_idx)
old_logits2_ls = my_padding_logit(old_logits2_ls,
max_token_num-1, pad_idx)
if vic_logits2ls[0] is not None:
newvic_logits2ls = []
for per_data in vic_logits2ls:
sl = len(per_data)
v = len(per_data[0])
tmp_ts = torch.ones((sl, v), dtype=torch.float)
for jjjj, per_token_logit in enumerate(per_data):
tmp_ts[jjjj] = torch.tensor(per_token_logit,)
newvic_logits2ls.append(tmp_ts)
vic_logits2ls = my_padding_logits(newvic_logits2ls,
max_token_num-1, pad_idx)
idxs2_dist = my_padding_token_dist(idx2_dist,
max_token_num-1, pad_idx)
# # ---------------------------------------------------------
# # now fix the logic of constructive two samples
# for i, prompt in enumerate(p_ls):
# # print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")
# pidx11 = idxs11_ls[i].unsqueeze(0).to(args.device)
# pidx12 = idxs12_ls[i].unsqueeze(0).to(args.device)
# p11 = float(torch.sum(torch.exp(old_logits11_ls[i])
# * mask11[i, :-1])
# / torch.sum(mask11[i, :-1]))
# p12 = float(torch.sum(torch.exp(old_logits12_ls[i])
# * mask12[i, :-1])
# / torch.sum(mask12[i, :-1]))
# print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>")
# print(f"confidence, 1: {p11}, 2: {p12}")
# if p12 > p11:
# print("SWAP.")
# idxs11_ls[i] = pidx12.squeeze(0).to("cpu")
# idxs12_ls[i] = pidx11.squeeze(0).to("cpu")
# temppp = old_logits11_ls[i]
# old_logits11_ls[i] = old_logits12_ls[i]
# old_logits12_ls[i] = temppp
# temppp = mask11[i]
# mask11[i] = mask12[i]
# mask12[i] = temppp
# if max(p11, p12) < tau1:
# print("BUT still use the VIC's labels.")
# # print(f"shape of 11: {p_i_11_ls.shape}")
# # print(f"shape of 2: {idx2ls.shape}")
# # print(f"shape of 12: {p_i_12_ls.shape}")
# idxs11_ls[i] = idx2ls[i]
# mask11[i] = mask2[i]
# old_logits11_ls[i] = old_logits2_ls[i]
# Dataset what we seen is about the last stage,
# not current stage.
# If it is the first stage, then we use the victim's label
# to guide the training, for a better bootstrapping.
if vic_logits2ls[0] is not None:
trainset = TensorDataset(
idxs11_ls,
idxs12_ls,
idx2ls,
mask11,
mask12,
mask2,
old_logits11_ls,
old_logits12_ls,
old_logits2_ls,
vic_logits2ls,
)
else:
trainset = TensorDataset(
idxs11_ls,
idxs12_ls,
idx2ls,
mask11,
mask12,
mask2,
old_logits11_ls,
old_logits12_ls,
old_logits2_ls,
old_logits2_ls,
)
loader = DataLoader(trainset,
batch_size=args.batch_size,
shuffle=True,
)
print(">>>> Period {}".format(iter_idx))
lm = one_period(args, lm,
lm_tokenizer,
loader,
args.epoch, args.device,
tb_writer,
tensorboard_name,
args.save_path,
args.LR,
args.acc_step, args.log_step,
args.save_step,
args.beta,
is_black_box=0,
method=args.task,
)
# lm_tokenizer.save_pretrained(args.save_path+"___finally")
# lm.save_pretrained(args.save_path+"___finally")
return lm
def one_period(args, lm,
lm_tokenizer,
loader, epoch, device,
tb_writer,
tensorboard_name,
save_path,
LR=3e-5,
acc_step=1,
log_step=100,
save_step=1000,
beta=0.7,
epsln=1e-6,
is_black_box=0,
method="LORD-II",
):
overall_loss = 0.
overall_step = 0
pad_token_id = lm_tokenizer.pad_token_id
kl_loss = torch.nn.KLDivLoss(reduction="none")
sigmoid = torch.nn.Sigmoid()
opt1 = torch.optim.AdamW(lm.parameters(), lr=LR)
for e in tqdm(range(epoch), desc="epoch"):
for item in tqdm(loader, desc="loader"):
overall_step += 1
# print(item)
idxs11, idxs12, idxs2, mask11, mask12,\
mask2, old_logits11, old_logits12,\
old_logits2, vic_logits2 = item
bs, sqlen1 = idxs11.shape
sqlen = sqlen1
idxs11 = idxs11.to(device) # bs, sql
idxs12 = idxs12.to(device) # bs, sql
idxs2 = idxs2.to(device) # bs, sql
mask11 = mask11.to(device)
mask12 = mask12.to(device)
mask2 = mask2.to(device)
mask11 = mask11 == 0
mask12 = mask12 == 0
# already normalized by softmax
old_logits11 = old_logits11.to(device) # bs, sql,
old_logits12 = old_logits12.to(device) # bs, sql,
old_logits2 = old_logits2.to(device) # bs, sql,
if args.is_black_box==0:
vic_logits2 = vic_logits2.to(device) # bs, sql, 5
print("===========================================")
print(f"idx11text: {lm_tokenizer.decode(idxs11[0])}")
print(f"idx12text: {lm_tokenizer.decode(idxs12[0])}")
print(f"idx2text: {lm_tokenizer.decode(idxs2[0])}")
# loss1 = lm(idxs11,
# labels=labels11).loss
# loss2 = lm(idxs12,
# labels=labels12).loss
# # loss = loss1-loss2
# loss = loss1
# hard to say: our method.
logits11 = lm(idxs11).logits[:, :-1, :]
logits11 = F.log_softmax(logits11, dim=-1)
logits11 = logits11[torch.arange(bs).unsqueeze(1),
torch.arange(sqlen-1).unsqueeze(0),
idxs11[:, 1:sqlen]]
p11 = torch.sum(torch.exp(logits11)*mask11[:, :-1], dim=1)\
/ torch.sum(mask11[:, :-1], dim=1)
logits12 = lm(idxs12).logits[:, :-1, :]
logits12 = F.log_softmax(logits12, dim=-1)
logits12 = logits12[torch.arange(bs).unsqueeze(1),
torch.arange(sqlen-1).unsqueeze(0),
idxs12[:, 1:sqlen]]
p12 = torch.sum(torch.exp(logits12)*mask12[:, :-1], dim=1)\
/ torch.sum(mask12[:, :-1], dim=1)
logits2 = lm(idxs2).logits[:, :-1, :]
logits2 = torch.log_softmax(logits2, dim=-1)
logits2_cons = logits2[torch.arange(bs).unsqueeze(1),
torch.arange(sqlen-1).unsqueeze(0),
idxs2[:, 1:sqlen]]
p2 = torch.sum(torch.exp(logits2_cons)*mask2[:, :-1], dim=1)\
/ torch.sum(mask2[:, :-1], dim=1)
# higher better
term1 = torch.sum(log_clip(-old_logits12+logits12)
* mask12[:, :-1], dim=1)
# higher better
term2 = torch.sum(log_clip(-old_logits11+logits11)
* mask11[:, :-1], dim=1)
if args.is_black_box == 0:
term3 = \
(vic_logits2[:, :, 0]+old_logits2-2*logits2_cons)
else:
term3 = - logits2_cons
term3 = torch.sum(term3 * mask2[:, :-1])
print("---------------------------------")
print(f"p11: {p11}\n p12: {p12}")
print(f"p11>tau1: {p11 > args.tau1}")
print(f"p12>tau1: {p12 > args.tau1}")
print(f"p2>tau1: {p2 > args.tau1}")
print(f"p11<tau2: {p11 < args.tau2}")
print(f"p12<tau2: {p12 < args.tau2}")
loss_1 = -1*(p11 > args.tau1)*term1 + -1*(p12 > args.tau1)*term2
loss_1 += (p11 < args.tau2)*term1 + (p12 < args.tau2)*term2
loss_2 = (p2 < args.tau1)*term3
loss = loss_1 + loss_2
print(f"LOSS 1: {loss_1}")
print(f"LOSS 2: {loss_2}")
print(f"LOSS: {loss}")
# if loss == torch.tensor(float("nan")):
# print("++++++++++++++++++++++")
# print(f"term1: {term1}")
# print(f"term2: {term3}")
# print(f"loss1: {loss_1}")
# print(f"loss2: {loss_2}")
# print(f"loss: {loss}")
# print(f"mask: {mask[:,:-1]}")
# print("++++++++DEBUG DONE.++++++++")
loss_constractive = loss
loss_constractive_past = 0.
loss_constractive_good = 0.
loss_logits = 0.
overall_loss += loss_constractive + loss_logits
# TEMPerial comment to use the new loss function.
# logits11 = lm(idxs11).logits[:, :-1, :]
# logits11 = F.log_softmax(logits11, dim=-1)
# logits11 = logits11[torch.arange(bs).unsqueeze(1),
# torch.arange(sqlen-1).unsqueeze(0),
# idxs11[:, 1:sqlen]]
# logits12 = lm(idxs12).logits[:, :-1, :]
# logits12 = F.log_softmax(logits12, dim=-1)
# logits12 = logits12[torch.arange(bs).unsqueeze(1),
# torch.arange(sqlen-1).unsqueeze(0),
# idxs12[:, 1:sqlen]]
# # now compute the loss:
# loss = -1*(torch.sum(logits11*mask11[:, :-1])
# - torch.sum(logits12*mask12[:, :-1]))
overall_loss = loss
if overall_step % log_step == 0:
print(" LOSS: {}".format(
overall_loss,
))
tb_writer.add_scalar("loss", overall_loss,
overall_step)
if overall_step % save_step == 0:
print(" -->Regular Saving.")
print(f"in epoch {e}, step {overall_step}.")
lm_tokenizer.save_pretrained(save_path+"___"+str(overall_step))
lm.save_pretrained(save_path+"___"+str(overall_step))
if overall_step % acc_step == 0:
opt1.zero_grad()
overall_loss.backward()
opt1.step()
overall_loss = 0.
print(" -->Finally Saving.")
# lm_tokenizer.save_pretrained(save_path+"___STEPfinally")
# lm.save_pretrained(save_path+"___STEPfinally")
print("ONE PERIOD TRAINING DONE!")
return lm
# running entry
if __name__ == "__main__":
# main()
print("EVERYTHING DONE.")