-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathengine.py
260 lines (218 loc) · 9.77 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
"""
Train and eval functions used in main.py
"""
from enum import IntEnum
import math
import sys
from typing import Iterable, Optional
import torch
import csv
import numpy as np
from sklearn import metrics
from timm.data import Mixup
from timm.utils import accuracy, ModelEma
from torch.nn.utils import clip_grad_norm_
from losses.distillation_losses import DistillationLoss
from utilities import utils
def train_one_epoch(model: torch.nn.Module, criterion: DistillationLoss,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler, max_norm: float = 0,
model_ema: Optional[ModelEma] = None, mixup_fn: Optional[Mixup] = None,
set_training_mode=True):
model.train(set_training_mode)
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
metric_logger.add_meter('cnn_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 10
for samples, targets in metric_logger.log_every(data_loader, print_freq, header):
samples = tensor_to_cuda(samples, device)
targets = tensor_to_cuda(targets, device)
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
with torch.cuda.amp.autocast():
outputs = model(samples)
loss = criterion(outputs, targets)
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
print(outputs)
print(targets)
sys.exit(1)
optimizer.zero_grad()
# this attribute is added by timm on one optimizer (adahessian)
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
loss_scaler(loss, optimizer, clip_grad=max_norm,
parameters=model.parameters(), create_graph=is_second_order)
# torch.cuda.synchronize()
if model_ema is not None:
model_ema.update(model)
metric_logger.update(loss=loss_value)
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
metric_logger.update(cnn_lr=optimizer.param_groups[-1]["lr"])
# # gather the stats from all processes
# metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(data_loader, model, device, criterion=None, num_class=2, save_csv=None):
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
# switch to evaluation mode
model.eval()
preds = []
gts = []
softmax = torch.nn.Softmax(dim=1)
for images, target in metric_logger.log_every(data_loader, 10, header):
# images = images.to(device, non_blocking=True)
# target = target.to(device, non_blocking=True)
images = tensor_to_cuda(images, device)
target = tensor_to_cuda(target, device)
# compute output
with torch.cuda.amp.autocast():
output = model(images)
if criterion is not None:
loss = criterion(images, output, target)
else:
loss = torch.tensor(0)
metric_logger.update(loss=loss.item())
# preds.append(output.sigmoid_())
preds.append(softmax(output))
gts.append(target)
preds = torch.cat(preds, dim=0)
gts = torch.cat(gts, dim=0)
preds = preds.cpu().detach().numpy()
gts = gts.cpu().detach().numpy()
if len(gts.shape)>1:
gt_onehot = gts
# gts = np.argmax(gts, axis=1)
gts = gts[:,0]>0.5
else:
gt_onehot = np.eye(num_class)[gts]
if save_csv is not None:
csv_gt = save_csv[:-4] + '_gt.csv'
csv_pred = save_csv[:-4] + '_pred.csv'
header = ['level%d'%i for i in range(num_class)]
write_csv(csv_gt, header, mul=False, mod='w')
write_csv(csv_pred, header, mul=False, mod='w')
write_csv(csv_gt, gt_onehot, mul=True, mod='a')
write_csv(csv_pred, preds, mul=True, mod='a')
# # multi-label metric auc
auc_agv = 0
macroauc = metrics.roc_auc_score(gt_onehot, preds, average='macro')
weight = [0.25, 0.25, 0.5]
for i in range(gt_onehot.shape[1]):
auc = metrics.roc_auc_score(gt_onehot[:,i], preds[:,i])
metric_logger.meters['auc{}'.format(i)].update(auc, n=len(preds))
auc_agv += auc*weight[i]
metric_logger.meters['auc_agv'].update(auc_agv, n=len(preds))
metric_logger.meters['macroauc'].update(macroauc, n=len(preds))
# # metric auc
# auc = metrics.roc_auc_score(gt_onehot, preds, average='weighted')
# metric_logger.meters['auc'].update(auc, n=len(preds))
pred_y = np.argmax(preds, axis=1)
# pred_y = preds[:,0]>0.5
kp = metrics.cohen_kappa_score(gts, pred_y, weights='quadratic')
metric_logger.meters['kp'].update(kp, n=len(preds))
acc = metrics.accuracy_score(gts, pred_y)
metric_logger.meters['acc'].update(acc, n=len(preds))
print('* ACC {acc.global_avg:.3f} MacroAUC {macroauc.global_avg:.3f} AUC_Agv {auc_agv.global_avg:.3f} loss {losses.global_avg:.3f}'
.format(acc=metric_logger.acc, macroauc=metric_logger.macroauc, auc_agv=metric_logger.auc_agv, losses=metric_logger.loss))
print('* AUC0 {auc0.global_avg:.3f} AUC1 {auc1.global_avg:.3f} AUC2 {auc2.global_avg:.3f}'
.format(auc0=metric_logger.auc0, auc1=metric_logger.auc1, auc2=metric_logger.auc2))
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate_h(data_loader, model, device, criterion=None, num_class=2, save_csv=None):
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
# switch to evaluation mode
model.eval()
preds_h1 = []
preds_h2 = []
gts = []
softmax = torch.nn.Softmax(dim=1)
for images, target in metric_logger.log_every(data_loader, 10, header):
# images = images.to(device, non_blocking=True)
# target = target.to(device, non_blocking=True)
images = tensor_to_cuda(images, device)
target = tensor_to_cuda(target, device)
# compute output
with torch.cuda.amp.autocast():
output = model(images)
if criterion is not None:
# loss = criterion(images, output, target)
loss = criterion(output, target)
else:
loss = torch.tensor(0)
metric_logger.update(loss=loss.item())
h1, h2 = output
h1 = softmax(h1)
h2 = softmax(h2)
preds_h1.append(h1)
preds_h2.append(h2)
gts.append(target)
preds_h1 = torch.cat(preds_h1, dim=0)
preds_h2 = torch.cat(preds_h2, dim=0)
gts = torch.cat(gts, dim=0)
preds_h1 = preds_h1.cpu().detach().numpy()
preds_h2 = preds_h2.cpu().detach().numpy()
preds = preds_h2
gts = gts.cpu().detach().numpy()
gt_h1 = gts>1
if len(gts.shape)>1:
gt_onehot = gts
# gts = np.argmax(gts, axis=1)
gts = gts[:,0]>0.5
else:
gt_onehot = np.eye(num_class)[gts]
if save_csv is not None:
csv_gt = save_csv[:-4] + '_gt.csv'
csv_pred = save_csv[:-4] + '_pred.csv'
header = ['level%d'%i for i in range(num_class)]
write_csv(csv_gt, header, mul=False, mod='w')
write_csv(csv_pred, header, mul=False, mod='w')
write_csv(csv_gt, gt_onehot, mul=True, mod='a')
write_csv(csv_pred, preds, mul=True, mod='a')
# # multi-label metric auc
auc_agv = 0
macroauc = metrics.roc_auc_score(gt_onehot, preds, average='macro')
weight = [0.25, 0.25, 0.5]
for i in range(gt_onehot.shape[1]):
auc = metrics.roc_auc_score(gt_onehot[:,i], preds[:,i])
metric_logger.meters['auc{}'.format(i)].update(auc, n=len(preds))
auc_agv += auc*weight[i]
metric_logger.meters['auc_agv'].update(auc_agv, n=len(preds))
metric_logger.meters['macroauc'].update(macroauc, n=len(preds))
auc_h1 = metrics.roc_auc_score(gt_h1, preds_h1[:,1])
metric_logger.meters['auc_h1'].update(auc_h1, n=len(preds))
# # metric auc
# auc = metrics.roc_auc_score(gt_onehot, preds, average='weighted')
# metric_logger.meters['auc'].update(auc, n=len(preds))
pred_y = np.argmax(preds, axis=1)
# pred_y = preds[:,0]>0.5
kp = metrics.cohen_kappa_score(gts, pred_y, weights='quadratic')
metric_logger.meters['kp'].update(kp, n=len(preds))
acc = metrics.accuracy_score(gts, pred_y)
metric_logger.meters['acc'].update(acc, n=len(preds))
print('* ACC {acc.global_avg:.3f} MacroAUC {macroauc.global_avg:.3f} AUC_Agv {auc_agv.global_avg:.3f} loss {losses.global_avg:.3f}'
.format(acc=metric_logger.acc, macroauc=metric_logger.macroauc, auc_agv=metric_logger.auc_agv, losses=metric_logger.loss))
print('* AUC0 {auc0.global_avg:.3f} AUC1 {auc1.global_avg:.3f} AUC2 {auc2.global_avg:.3f} AUC_h1 {auc_h1.global_avg:.3f}'
.format(auc0=metric_logger.auc0, auc1=metric_logger.auc1, auc2=metric_logger.auc2, auc_h1=metric_logger.auc_h1))
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
def write_csv(csv_name, content, mul=True, mod="w"):
with open(csv_name, mod) as myfile:
mywriter = csv.writer(myfile)
if mul:
mywriter.writerows(content)
else:
mywriter.writerow(content)
def tensor_to_cuda(tensor, device):
if isinstance(tensor, dict):
for key in tensor:
tensor[key] = tensor_to_cuda(tensor[key], device)
return tensor
elif isinstance(tensor, (list, tuple)):
tensor = [tensor_to_cuda(t, device) for t in tensor]
return tensor
else:
return tensor.to(device)