-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathattention_sum.py
50 lines (39 loc) · 1.51 KB
/
attention_sum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
"""
attention sum operation for cloze-style Reading Comprehension Tasks.
i.e. Children's Book Test (CBT-NE, CBT-CN) Dataset.
refer to :
https://github.com/cairoHy/RC-experiments/blob/master/models/attention_sum_reader.py
"""
import tensorflow as tf
A_LEN = 10
def attention_sum(cans_ids, docoment_ids, attention_dist):
"""Attention sum.
Args:
cans_ids: [batch_size, num_cans]
docoment_ids: [batch_size, d_len]
attention_dist: [batch_size, d_len]
Returns:
[batch_size, num_cans]
"""
result = sum_probs_batch(cans_ids,
docoment_ids,
attention_dist)
return result
# attention-sum process
def sum_prob_of_word(word_ix, sentence_ixs, sentence_attention_probs):
word_ixs_in_sentence = tf.where(tf.equal(sentence_ixs, word_ix))
return tf.reduce_sum(tf.gather(sentence_attention_probs, word_ixs_in_sentence))
# noinspection PyUnusedLocal
def sum_probs_single_sentence(prev, cur):
candidate_indices_i, sentence_ixs_t, sentence_attention_probs_t = cur
result = tf.scan(
fn=lambda previous, x: sum_prob_of_word(x, sentence_ixs_t, sentence_attention_probs_t),
elems=[candidate_indices_i],
initializer=tf.constant(0., dtype="float32"))
return result
def sum_probs_batch(candidate_indices_bi, sentence_ixs_bt, sentence_attention_probs_bt):
result = tf.scan(
fn=sum_probs_single_sentence,
elems=[candidate_indices_bi, sentence_ixs_bt, sentence_attention_probs_bt],
initializer=tf.Variable([0] * A_LEN, dtype="float32"))
return result