-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
271 lines (193 loc) · 8.63 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import argparse
import logging
import os
import random
import numpy as np
import scipy
import torch
import torch as th
import config
import helpers
from data.data_module import DataModule
from torch.utils.data import TensorDataset
from models.build_model import build_model
import torch.nn.functional as Func
import warnings
from trainer import GAN_Attack
warnings.filterwarnings("ignore", category=UserWarning)
def set_seed(seed):
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
def load_weights(model, tag, weights_file):
loaded_state_dict = th.load(weights_file)
missing, unexpected = model.load_state_dict(loaded_state_dict, strict=False)
print(f"Successfully loaded initial weights from {weights_file}")
if missing:
print(f"Weights {missing} were not present in the initial weights file.")
if unexpected:
print(f"Unexpected weights {unexpected} were present in the initial weights file. These will be ignored.")
def PGD_contrastive(net, views, eps=8. / 255., alpha=2. / 255., iters=10): # eps=8. / 255., alpha=2. / 255., iters=10
# init
deltas = []
for x in views:
delta = torch.rand_like(x) * eps * 2 - eps
delta = torch.nn.Parameter(delta)
deltas.append(delta)
for i in range(iters):
net.zero_grad()
net([x + d for x, d in zip(views, deltas)])
losses = net.get_loss() # 求loss DDC1 DDC2 DDC3 Contrast/01 MSE/0 MSE/1 tot
losses['Contrast/01'].backward()
# print("loss is {}".format(loss))
for v in range(len(views)):
deltas[v].data = deltas[v].data + alpha * deltas[v].grad.sign()
deltas[v].grad = None
deltas[v].data = torch.clamp(deltas[v].data, min=-eps, max=eps)
deltas[v].data = torch.clamp(views[v] + deltas[v].data, min=0, max=1) - views[v]
# d.data = d.data + alpha * d.grad.sign()
# d.grad = None
# d.data = torch.clamp(d.data, min=-eps, max=eps)
# d.data = torch.clamp(x + d.data, min=0, max=1) - x
return [(x + d).detach() for x, d in zip(views, deltas)]
def train(args, cfg, net, train_loder, test_loader):
optimizer = net.configure_optimizers() #
mtc_list = []
for e in range(cfg.n_epochs):
loss_tot_all, loss_ori_all, loss_ad_all, loss_kl_all = 0, 0, 0, 0
net.train()
for idx, batch in enumerate(train_loder):
views = batch[:-1]
labels = batch[-1]
views = [tmp.to(net.device) for tmp in views]
views_ad = PGD_contrastive(net, views, eps=args.eps, alpha=args.alpha) # eps=0.15 alpha=0.02
optimizer.zero_grad()
loss_ori = net.training_step(views+[labels], idx) #
P1 = net.output
loss_ad = net.training_step(views_ad+[labels], idx)
P2 = net.output
eps = 0.0001 * torch.ones_like(P1, requires_grad=False).to(P1.device)
P1 = P1 + eps
P2 = P2 + eps
loss_kl = Func.kl_div(P2.log(), P1, reduction='batchmean')
loss_tot = loss_ori + args.para_ad * loss_ad + args.para_kl * loss_kl
loss_tot.backward()
optimizer.step()
loss_ori_all += loss_ori.detach().data
loss_ad_all += loss_ad.detach().data
loss_kl_all += loss_kl.detach().data
loss_tot_all += loss_tot.detach().data
logger.info('epoch:{}, loss_ori:{:.4f}, loss_ad:{:.4f}, loss_kl:{:4f}, loss:{:.4f}'
.format(e+1, loss_ori_all.data, loss_ad_all.data, loss_kl_all.data, loss_tot_all.data))
if e % 1 == 0:
with torch.no_grad():
net.eval()
test_list = []
for idx, batch in enumerate(test_loader):
batch = [item.to(net.device) for item in batch]
test_list.append(net._val_test_step(batch, idx, 'test'))
mtc = net._val_test_epoch_end(test_list, 'test')
logger.info('real data metric :acc:{:4f} nmi:{:4f} ari:{:4f}'.format(mtc['acc'], mtc['nmi'], mtc['ari']))
torch.save(net.state_dict(), str(args.save_dir) + '/epoch{}.ckpt'.format(e+1))
logger.info('model has been saved in {}/epoch{}.ckpt!'.format(str(args.save_dir), e+1))
mtc_list.append(np.array([mtc['acc'], mtc['nmi'], mtc['ari']]))
return mtc, mtc_list
def pre_main(ename, cfg, args, tag):
set_seed(5)
logger.info(ename)
n = int(args.percent * args.num)
data_module = DataModule(cfg.dataset_config)
if 'patchedmnist' in ename:
trainset = data_module.train_dataset[:]
trainset = [trainset[i] for i in [0, 1, 3, -1]]
data_module.train_dataset = TensorDataset(*trainset)
data_module.train_dataset = TensorDataset(*(data_module.train_dataset[:n]))
logger.info('{} used {} samples'.format(ename, len(data_module.train_dataset)))
train_loader = data_module.train_dataloader(shuffle=True, drop_last=True)
test_loader = data_module.train_dataloader(shuffle=True, drop_last=False)
net = build_model(cfg.model_config)
print(net)
save_dir = helpers.get_save_dir(ename, tag, 0)
os.makedirs(save_dir, exist_ok=True)
args.save_dir = save_dir
_, mtc_list = train(args, cfg, net, train_loader, test_loader)
torch.save(net.state_dict(), str(save_dir)+'/best.ckpt')
logger.info('model has been saved in {}'.format(str(save_dir)+'/best.ckpt'))
return mtc_list
def atk_main(ename, cfg, args, tag):
# ename = data_name + '_' + model_name
set_seed(5)
data_module = DataModule(cfg.dataset_config)
n = int(args.percent * args.num)
if 'patchedmnist' in ename:
trainset = data_module.train_dataset[:]
trainset = [trainset[i] for i in [0, 1, 3, -1]]
data_module.train_dataset = TensorDataset(*trainset)
data_module.train_dataset = TensorDataset(*(data_module.train_dataset[n:]))
logger.info('{} used {} samples'.format(ename, len(data_module.train_dataset)))
train_loader = data_module.train_dataloader(shuffle=True, drop_last=True)
test_loader = data_module.train_dataloader(shuffle=True, drop_last=False)
tar_model = build_model(cfg.model_config)
print(tar_model)
save_dir = helpers.get_save_dir(ename, tag, run=0)
load_weights(tar_model, tag, save_dir / 'best.ckpt')
for param in tar_model.parameters():
param.requires_grad = False
trainer = GAN_Attack(args, tar_model, perb_eps=args.atk_eps)
print(trainer.netGs)
print(trainer.netDs)
_, mtc_list = trainer.train(train_loader, test_loader, args.atk_epochs)
atk_save_dir = helpers.get_atk_save_dir(ename, 'atk_gans', run=0)
os.makedirs(atk_save_dir, exist_ok=True)
torch.save(trainer.netGs.state_dict(), str(atk_save_dir) + '/best.ckpt')
logger.info('atk_model has been saved in {}'.format(str(atk_save_dir) + '/best.ckpt'))
return mtc_list
if __name__ == '__main__':
print("Torch version:", th.__version__)
from tools import log
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', default='ardmvc_am')
parser.add_argument('--data_name', default='noisymnist')
args = parser.parse_args()
if 'ardmvc' not in args.model_name:
raise ValueError("Model name is not right.")
args.eps = 0.2
args.alpha = 0.02
args.percent = 0.5
args.device = config.DEVICE
args.atk_mode = 1
if args.data_name == 'noisymnist': # in ['noisymnist', 'noisyfashionmnist']:
args.num = 70000
args.atk_eps = 0.3
args.para_ad = 1
args.para_kl = 0.1
args.epochs = 30
elif args.data_name == 'noisyfashionmnist':
args.num = 70000
args.atk_eps = 0.15
args.para_ad = 0.1
args.para_kl = 1 #
args.epochs = 30
elif args.data_name == 'patchedmnist':
args.num = 21770
args.atk_eps = 0.3
args.para_ad = 0.1
args.para_kl = 0.1
args.epochs = 40
if args.model_name == 'ardmvc':
args.para_kl = 0
logger = log('logs', '{}_{}_{}'.format(args.model_name, args.data_name, int(0.5*100)), is_cover=True)
logger.info(args)
logger.info('pretraining total model!!!')
ename, cfg = config.get_experiment_config(args.data_name, args.model_name)
cfg.n_epochs = args.epochs
cfg.dataset_config.n_train_samples = args.num
pmtc_list = pre_main(ename, cfg, args, 'pretrain')
args.atk_epochs = 30
logger.info('attacking pretraining model!!!')
amtc_list = atk_main(ename, cfg, args, 'pretrain')
logger.handlers.clear()
logging.shutdown()
print('logging shut down!')