-
Notifications
You must be signed in to change notification settings - Fork 3
/
utils.py
470 lines (394 loc) · 17.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
import math
import json
import torch
import random
import datetime
from rouge import rouge
from bleu import compute_bleu
from templates import exp_templates, seq_templates, topn_templates
def rouge_score(references, generated):
"""both are a list of strings"""
score = rouge(generated, references)
rouge_s = {k: (v * 100) for (k, v) in score.items()}
'''
"rouge_1/f_score": rouge_1_f,
"rouge_1/r_score": rouge_1_r,
"rouge_1/p_score": rouge_1_p,
"rouge_2/f_score": rouge_2_f,
"rouge_2/r_score": rouge_2_r,
"rouge_2/p_score": rouge_2_p,
"rouge_l/f_score": rouge_l_f,
"rouge_l/r_score": rouge_l_r,
"rouge_l/p_score": rouge_l_p,
'''
return rouge_s
def bleu_score(references, generated, n_gram=4, smooth=False):
"""a list of lists of tokens"""
formatted_ref = [[ref] for ref in references]
bleu_s, _, _, _, _, _ = compute_bleu(formatted_ref, generated, n_gram, smooth)
return bleu_s * 100
class ExpDataLoader:
def __init__(self, data_dir):
with open(data_dir + 'explanation.json', 'r') as f:
self.exp_data = json.load(f)
self.train = self.exp_data['train']
self.valid = self.exp_data['val']
self.test = self.exp_data['test']
class SeqDataLoader:
def __init__(self, data_dir):
self.user2items_positive = {}
with open(data_dir + 'sequential.txt', 'r') as f:
for line in f.readlines():
user, items = line.strip().split(' ', 1)
self.user2items_positive[int(user)] = items.split(' ')
self.user2items_negative = {}
with open(data_dir + 'negative.txt', 'r') as f:
for line in f.readlines():
user, items = line.strip().split(' ', 1)
self.user2items_negative[int(user)] = items.split(' ')
with open(data_dir + 'datamaps.json', 'r') as f:
datamaps = json.load(f)
self.id2user = datamaps['id2user']
self.id2item = datamaps['id2item']
def compute_whole_word_id(seq_batch, tokenizer, max_len):
whole_word_ids = []
for seq in seq_batch:
token_list = tokenizer.tokenize(seq)
start_indices = []
for idx, token in enumerate(token_list):
if token == '_':
start_indices.append(idx - 1) # user_xx or item_xx, starts before _
end_indices = []
for start in start_indices:
mover = start + 2 # user/item _ xx
while mover < len(token_list) and token_list[mover].isdigit():
mover += 1
end_indices.append(mover)
whole_word_id = [0] * len(token_list) # padding
for i, (start, end) in enumerate(zip(start_indices, end_indices)):
whole_word_id[start:end] = [i + 1] * (end - start) # leave 0 as padding token
whole_word_ids.append(whole_word_id)
# make the batch of the same length
padded_whole_word_ids = []
for whole_word_id in whole_word_ids:
padded_whole_word_ids.append(whole_word_id + [0] * (max_len - len(whole_word_id)))
return padded_whole_word_ids
class ExpSampler:
def __init__(self, exp_data):
self.task_id = 0
self.exp_data = exp_data
self.sample_num = len(self.exp_data)
self.index_list = list(range(self.sample_num))
self.step = 0
def check_step(self):
if self.step == self.sample_num:
self.step = 0
random.shuffle(self.index_list)
def sample(self, num):
task = [self.task_id] * num
inputs, outputs = [], []
for _ in range(num):
self.check_step()
idx = self.index_list[self.step]
record = self.exp_data[idx]
template = random.choice(exp_templates)
inputs.append(template.format(record['user'], record['item']))
outputs.append(record['explanation'])
self.step += 1
return task, inputs, outputs
class SeqSampler:
def __init__(self, user2items_pos):
self.task_id = 1
self.max_seq_len = 21
self.item_template = ' item_'
self.user2items_pos = user2items_pos
self.user_list = list(user2items_pos.keys())
self.sample_num = len(self.user_list)
self.index_list = list(range(self.sample_num))
self.step = 0
def check_step(self):
if self.step == self.sample_num:
self.step = 0
random.shuffle(self.index_list)
def sample_seq(self, u):
item_history = self.user2items_pos[u] # should have at least 4 items
start_item = random.randint(0, len(item_history) - 4) # cannot be the last 3
end_item = random.randint(start_item + 1, len(item_history) - 3) # cannot be the last 2
item_seg = item_history[start_item:(end_item + 1)] # sample a segment from the sequence without the last two
if len(item_seg) > self.max_seq_len:
item_seg = item_seg[-self.max_seq_len:]
return item_seg
def sample(self, num):
task = [self.task_id] * num
inputs, outputs = [], []
for _ in range(num):
self.check_step()
idx = self.index_list[self.step]
u = self.user_list[idx]
item_seg = self.sample_seq(u)
template = random.choice(seq_templates)
input_seq = template.format(u, self.item_template.join(item_seg[:-1]))
inputs.append(input_seq)
outputs.append(item_seg[-1])
self.step += 1
return task, inputs, outputs
class TopNSampler:
def __init__(self, user2items_pos, negative_num, item_num):
self.task_id = 2
self.item_template = ' item_'
self.negative_num = negative_num
self.item_num = item_num
self.user2item_set_pos = {}
self.user2items_train = {}
self.user_list = list(user2items_pos.keys())
for user, items in user2items_pos.items():
self.user2item_set_pos[user] = set([int(item) for item in items])
self.user2items_train[user] = items[:-2]
self.sample_num = len(self.user_list)
self.index_list = list(range(self.sample_num))
self.step = 0
def check_step(self):
if self.step == self.sample_num:
self.step = 0
random.shuffle(self.index_list)
def sample_negative(self, user):
item_set = set()
items_pos = self.user2item_set_pos[user]
while len(item_set) < self.negative_num:
i = random.randint(1, self.item_num)
if i not in items_pos:
item_set.add(i)
return [str(item) for item in item_set]
def sample(self, num):
task = [self.task_id] * num
inputs, outputs = [], []
for _ in range(num):
self.check_step()
idx = self.index_list[self.step]
u = self.user_list[idx]
item_list = self.user2items_train[u]
item_pos = random.choice(item_list)
item_list_neg = self.sample_negative(u)
item_list_neg.append(item_pos)
random.shuffle(item_list_neg)
template = random.choice(topn_templates)
input_seq = template.format(u, self.item_template.join(item_list_neg))
inputs.append(input_seq)
outputs.append(item_pos)
self.step += 1
return task, inputs, outputs
class TrainBatchify:
def __init__(self, exp_data, user2items_pos, negative_num, item_num, tokenizer, exp_len, batch_size):
self.exp_sampler = ExpSampler(exp_data)
self.seq_sampler = SeqSampler(user2items_pos)
self.topn_sampler = TopNSampler(user2items_pos, negative_num, item_num)
self.tokenizer = tokenizer
self.exp_len = exp_len
self.batch_size = batch_size
self.exp_num = int(self.exp_sampler.sample_num / batch_size)
self.seq_num = int(self.seq_sampler.sample_num / batch_size)
self.topn_num = int(self.topn_sampler.sample_num / batch_size)
self.batch_num = self.exp_num + self.seq_num + self.topn_num
self.batch_index = 0
def encode(self, task, input_list, output_list):
encoded_source = self.tokenizer(input_list, padding=True, return_tensors='pt')
source_seq = encoded_source['input_ids'].contiguous()
source_mask = encoded_source['attention_mask'].contiguous()
max_len = source_seq.size(1)
whole_word_ids = compute_whole_word_id(input_list, self.tokenizer, max_len)
whole_word = torch.tensor(whole_word_ids, dtype=torch.int64).contiguous()
encoded_target = self.tokenizer(output_list, padding=True, return_tensors='pt')
target_seq = encoded_target['input_ids'][:, :self.exp_len]
task = torch.tensor(task, dtype=torch.int64)
return task, source_seq, source_mask, whole_word, target_seq
def next_batch(self):
self.batch_index += 1
if self.batch_index % 3 == 1:
task_list, input_list, output_list = self.exp_sampler.sample(self.batch_size)
elif self.batch_index % 3 == 2:
task_list, input_list, output_list = self.seq_sampler.sample(self.batch_size)
else:
task_list, input_list, output_list = self.topn_sampler.sample(self.batch_size)
return self.encode(task_list, input_list, output_list)
class ExpBatchify:
def __init__(self, exp_data, tokenizer, exp_len, batch_size):
self.task_id = 0
template = 'user_{} item_{}'
input_list, output_list = [], []
for x in exp_data:
input_list.append(template.format(x['user'], x['item']))
output_list.append(x['explanation'])
encoded_source = tokenizer(input_list, padding=True, return_tensors='pt')
self.source_seq = encoded_source['input_ids'].contiguous()
self.source_mask = encoded_source['attention_mask'].contiguous()
max_len = self.source_seq.size(1)
whole_word_ids = compute_whole_word_id(input_list, tokenizer, max_len)
self.whole_word = torch.tensor(whole_word_ids, dtype=torch.int64).contiguous()
encoded_target = tokenizer(output_list, padding=True, return_tensors='pt')
self.target_seq = encoded_target['input_ids'][:, :exp_len].contiguous()
self.batch_size = batch_size
self.sample_num = len(exp_data)
self.total_step = int(math.ceil(self.sample_num / self.batch_size))
self.step = 0
def next_batch(self):
if self.step == self.total_step:
self.step = 0
start = self.step * self.batch_size
offset = min(start + self.batch_size, self.sample_num)
self.step += 1
source_seq = self.source_seq[start:offset] # (batch_size, seq_len)
source_mask = self.source_mask[start:offset]
whole_word = self.whole_word[start:offset]
target_seq = self.target_seq[start:offset]
task = torch.ones((offset - start,), dtype=torch.int64) * self.task_id
return task, source_seq, source_mask, whole_word, target_seq
def next_batch_valid(self):
return self.next_batch()
def next_batch_test(self):
return self.next_batch()
class SeqBatchify:
def __init__(self, user2items_pos, tokenizer, batch_size):
self.task_id = 1
self.max_seq_len = 21
self.user_template = 'user_{} item_{}'
self.item_template = ' item_'
self.tokenizer = tokenizer
self.user2items_pos = user2items_pos
self.user_list = list(user2items_pos.keys())
self.batch_size = batch_size
self.sample_num = len(self.user_list)
self.total_step = int(math.ceil(self.sample_num / self.batch_size))
self.step = 0
def encode(self, input_list, output_list):
sample_num = len(input_list)
encoded_source = self.tokenizer(input_list, padding=True, return_tensors='pt')
source_seq = encoded_source['input_ids'].contiguous()
source_mask = encoded_source['attention_mask'].contiguous()
max_len = source_seq.size(1)
whole_word_ids = compute_whole_word_id(input_list, self.tokenizer, max_len)
whole_word = torch.tensor(whole_word_ids, dtype=torch.int64).contiguous()
encoded_target = self.tokenizer(output_list, padding=True, return_tensors='pt')
target_seq = encoded_target['input_ids']
task = torch.ones((sample_num,), dtype=torch.int64) * self.task_id
return task, source_seq, source_mask, whole_word, target_seq
def next_batch(self, valid=True):
if self.step == self.total_step:
self.step = 0
start = self.step * self.batch_size
offset = min(start + self.batch_size, self.sample_num)
self.step += 1
input_list = []
output_list = []
for i in range(start, offset):
u = self.user_list[i]
item_seg = self.user2items_pos[u]
if valid:
item_seg = item_seg[:-1] # leave the last 1
if len(item_seg) > self.max_seq_len:
item_seg = item_seg[-self.max_seq_len:]
input_seq = self.user_template.format(u, self.item_template.join(item_seg[:-1]))
#input_seq = 'user_{}'.format(u)
input_list.append(input_seq)
output_list.append(item_seg[-1])
return self.encode(input_list, output_list)
def next_batch_valid(self):
return self.next_batch()
def next_batch_test(self):
return self.next_batch(False)
class TopNBatchify:
def __init__(self, user2items_pos, user2items_neg, negative_num, item_num, tokenizer, batch_size=128):
self.task_id = 2
self.user_template = 'user_{} item_{}'
self.item_template = ' item_'
self.negative_num = negative_num
self.item_num = item_num
self.tokenizer = tokenizer
self.user2items_neg = user2items_neg
self.user2item_set_pos = {}
self.user2item_val = {}
self.user2item_test = {}
self.user_list = list(user2items_pos.keys())
for user, items in user2items_pos.items():
self.user2item_set_pos[user] = set([int(item) for item in items])
self.user2item_val[user] = items[-2]
self.user2item_test[user] = items[-1]
self.batch_size = batch_size
self.sample_num = len(self.user_list)
self.total_step = int(math.ceil(self.sample_num / self.batch_size))
self.step = 0
def encode(self, input_list, output_list):
sample_num = len(input_list)
encoded_source = self.tokenizer(input_list, padding=True, return_tensors='pt')
source_seq = encoded_source['input_ids'].contiguous()
source_mask = encoded_source['attention_mask'].contiguous()
max_len = source_seq.size(1)
whole_word_ids = compute_whole_word_id(input_list, self.tokenizer, max_len)
whole_word = torch.tensor(whole_word_ids, dtype=torch.int64).contiguous()
encoded_target = self.tokenizer(output_list, padding=True, return_tensors='pt')
target_seq = encoded_target['input_ids']
task = torch.ones((sample_num,), dtype=torch.int64) * self.task_id
return task, source_seq, source_mask, whole_word, target_seq
def sample_negative(self, user):
item_set = set()
items_pos = self.user2item_set_pos[user]
while len(item_set) < self.negative_num:
i = random.randint(1, self.item_num)
if i not in items_pos:
item_set.add(i)
return [str(item) for item in item_set]
def next_batch(self, valid=True):
if self.step == self.total_step:
self.step = 0
start = self.step * self.batch_size
offset = min(start + self.batch_size, self.sample_num)
self.step += 1
input_list = []
output_list = []
for i in range(start, offset):
u = self.user_list[i]
if valid:
item_pos = self.user2item_val[u]
item_list_neg = self.sample_negative(u)
else:
item_pos = self.user2item_test[u]
item_list_neg = self.user2items_neg[u]
item_list_neg.append(item_pos)
random.shuffle(item_list_neg)
input_seq = self.user_template.format(u, self.item_template.join(item_list_neg))
input_list.append(input_seq)
output_list.append(item_pos)
return self.encode(input_list, output_list)
def next_batch_valid(self):
return self.next_batch()
def next_batch_test(self):
return self.next_batch(False)
def now_time():
return '[' + datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f') + ']: '
def evaluate_ndcg(user2item_test, user2items_top, top_k):
dcgs = [1 / math.log2(i + 2) for i in range(top_k)]
ndcg = 0
for u, items in user2items_top.items():
ground_truth = set(user2item_test[u])
dcg = 0
count = 0
for idx, item in enumerate(items[:top_k]):
if item in ground_truth:
dcg += dcgs[idx]
count += 1
if count > 0:
dcg = dcg / sum(dcgs[:count])
ndcg += dcg
return ndcg / len(user2item_test)
def evaluate_hr(user2item_test, user2items_top, top_k):
total = 0
for u, items in user2items_top.items():
ground_truth = set(user2item_test[u])
count = 0
for item in items[:top_k]:
if item in ground_truth:
count += 1
total += count / len(ground_truth)
return total / len(user2item_test)
def ids2tokens(ids, tokenizer):
text = tokenizer.decode(ids, skip_special_tokens=True)
return text.split()