-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathmain_dic.py
398 lines (341 loc) · 17.7 KB
/
main_dic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
from __future__ import print_function
from __future__ import division
import argparse
import os
import time
import gc
import torch
import torchvision
import torch.utils.data
import torch.optim
import torchvision.transforms as transforms
import torch.backends.cudnn as cudnn
import numpy as np
import matplotlib.pyplot as plt
cudnn.benchmark = True
import _init_paths
import models.net_sia as net_sia
import datasets.dataset_pair as dset
import layer
import utils
plt.switch_backend('agg')
configurations = {
1: dict(
lr=1.0e-1,
step_size=[7500, 15000, 22500], # "lr_policy: step" [15, 30, 45, 50]
epochs=50,
),
2: dict(
lr=1.0e-1,
step_size=[10000, 17500, 22500], # [20, 35, 45, 50] MultiStepLR
epochs=50,
)
}
# Training settings
parser = argparse.ArgumentParser(description='PyTorch CosFace')
# DATA
parser.add_argument('--root_path', type=str, default='/home/lingxuesong/data/sia',
help='path to root path of images')
parser.add_argument('--train_list', type=str, default=None,help='path to training pair list')
parser.add_argument('--valid_list', type=str, default=None,help='path to validating pair list')
parser.add_argument('--batch_size', type=int, default=512,
help='input batch size for training (default: 512)')
parser.add_argument('--is_gray', type=bool, default=False,
help='Transform input image to gray or not (default: False)')
# Network
parser.add_argument('--weight_model', type=str, default='checkpoint/Mar02-00-34-21/CosFace_15_checkpoint.pth')
parser.add_argument('--weight_fc', type=str, default='checkpoint/Mar02-00-34-21/CosFace_15_checkpoint_classifier.pth')
parser.add_argument('--resume', type=str, default='')
parser.add_argument('--resume_fc', type=str, default='')
parser.add_argument('--s_weight', type=float, default=10.0)
# Classifier
parser.add_argument('--num_class', type=int, default=2622,
help='number of people(class)')
parser.add_argument('--classifier_type', type=str, default='MCP',
help='Which classifier for train. (MCP, AL, L)')
# LR policy
parser.add_argument('--epochs', type=int, default=50,
help='number of epochs to train (default: 30)')
parser.add_argument('--lr', type=float, default=0.1,
help='learning rate (default: 0.1)')
parser.add_argument('--step_size', type=list, default=None,
help='lr decay step')
parser.add_argument('--momentum', type=float, default=0.9,
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight_decay', type=float, default=5e-4,
metavar='W', help='weight decay (default: 0.0005)')
parser.add_argument('-c', '--config', type=int, default=1, choices=configurations.keys(),
help='the number of settings and hyperparameters used in training')
# Common settings
parser.add_argument('--log_interval', type=int, default=100,
help='how many batches to wait before logging training status')
parser.add_argument('--save_path', type=str, default='',
help='path to save checkpoint')
parser.add_argument('--no_cuda', type=bool, default=False,
help='disables CUDA training')
parser.add_argument('--workers', type=int, default=8,
help='how many workers to load data')
parser.add_argument('--gpus', type=str, default='4,5,6,7')
parser.add_argument('--ngpus', type=int, default=4)
parser.add_argument('--d_name', type=str, default='')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus
args.cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if args.cuda else "cpu")
def main():
# --------------------------------------model----------------------------------------
model = net_sia.LResNet50E_IR_Sia(is_gray=args.is_gray)
model_eval = net_sia.LResNet50E_IR_Sia(is_gray=args.is_gray)
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus
# 512 is dimension of feature
classifier = {
'MCP': layer.MarginCosineProduct(512, args.num_class),
'AL' : layer.AngleLinear(512, args.num_class),
'L' : torch.nn.Linear(512, args.num_class, bias=False)
}[args.classifier_type]
classifier.load_state_dict(torch.load(args.weight_fc))
print(os.environ['CUDA_VISIBLE_DEVICES'], args.cuda)
pretrained = torch.load(args.weight_model)
pretrained_dict = pretrained['model_state_dict']
model_dict = model.state_dict()
model_eval_dict = model_eval.state_dict()
for k, v in pretrained_dict.items():
if k in model_dict:
model_dict[k].copy_(v)
del pretrained
del pretrained_dict
if args.resume:
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint['model_state_dict'])
# classifier ckpt only save model info
classifier.load_state_dict(torch.load(args.resume_fc))
print(model)
model = torch.nn.DataParallel(model).to(device)
model_eval = model_eval.to(device)
classifier = classifier.to(device)
args.run_name = utils.get_run_name()
output_dir = os.path.join(args.save_path, args.run_name.split("_")[0])
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# ------------------------------------load image---------------------------------------
if args.is_gray:
train_transform = transforms.Compose([
transforms.Grayscale(),
transforms.ToTensor(), # range [0, 255] -> [0.0,1.0]
transforms.Normalize(mean=(0.5,), std=(0.5,))
]) # gray
else:
train_transform = transforms.Compose([
transforms.ToTensor(), # range [0, 255] -> [0.0,1.0]
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) # range [0.0, 1.0] -> [-1.0,1.0]
])
valid_transform = transforms.Compose([
transforms.ToTensor(), # range [0, 255] -> [0.0,1.0]
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) # range [0.0, 1.0] -> [-1.0,1.0]
])
train_loader = torch.utils.data.DataLoader(
dset.ImageList(root=args.root_path, fileList=args.train_list,
transform=train_transform),
batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=False, drop_last=True)
val_loader = torch.utils.data.DataLoader(
dset.ImageList(root=args.root_path, fileList=args.valid_list,
transform=valid_transform),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=False, drop_last=False)
print('length of train Database: ' + str(len(train_loader.dataset)) + ' Batches: ' + str(len(train_loader)))
print('length of valid Database: ' + str(len(val_loader.dataset)) + ' Batches: ' + str(len(val_loader)))
print('Number of Identities: ' + str(args.num_class))
# Get a batch of training data, (img, img_occ, label)
'''
inputs, inputs_occ, imgPair, targets = next(iter(train_loader))
out = torchvision.utils.make_grid(inputs)
out_occ = torchvision.utils.make_grid(inputs_occ)
mean = torch.tensor((0.5,0.5,0.5), dtype=torch.float32)
std = torch.tensor((0.5,0.5,0.5), dtype=torch.float32)
utils.imshow(out, mean, std, title=str(targets))
plt.savefig(output_dir + '/train.png')
utils.imshow(out_occ, mean, std, title=str(targets))
plt.savefig(output_dir + '/train_occ.png')
'''
#---------------------------------------params setting-----------------------------------
for name, param in model.named_parameters():
if 'layer' in name or 'conv1' in name or 'bn1' in name or 'prelu1' in name:
param.requires_grad = False
else:
param.requires_grad = True
print("Params to learn:")
params_to_update = []
params_to_stay = []
for name, param in model.named_parameters():
if param.requires_grad == True:
if 'sia' in name:
params_to_update.append(param)
print("Update \t", name)
else:
params_to_stay.append(param)
print("Stay \t", name)
for name, param in classifier.named_parameters():
param.requires_grad = True
params_to_stay.append(param)
print("Stay \t", name)
#--------------------------------loss function and optimizer-----------------------------
cfg = configurations[args.config]
criterion = torch.nn.CrossEntropyLoss().to(device)
criterion2 = torch.nn.L1Loss(reduction='mean').to(device)
optimizer = torch.optim.SGD([
{'params': params_to_stay, 'lr': 0, 'weight_decay': 0, 'momentum': 0},
{'params': params_to_update}
],
lr=cfg['lr'],
momentum=args.momentum,
weight_decay=args.weight_decay)
start_epoch = 1
if args.resume:
optimizer.load_state_dict(checkpoint['optim_state_dict'])
start_epoch = checkpoint['epoch']
del checkpoint
# ----------------------------------------train----------------------------------------
save_ckpt(model, 0, optimizer, output_dir + '/CosFace_0_checkpoint.pth') # Not resumed, pretrained~
for epoch in range(start_epoch, cfg['epochs'] + 1):
train(train_loader, model, classifier, criterion, criterion2, optimizer, epoch, cfg['step_size'], cfg['lr'])
save_ckpt(model, epoch, optimizer, output_dir + '/CosFace_' + str(epoch) + '_checkpoint.pth')
print('Validating on valid set...')
valid(val_loader, model_eval, output_dir + '/CosFace_' + str(epoch) + '_checkpoint.pth', classifier, criterion, criterion2)
print('Finished Training')
def valid(val_loader, model, model_path, classifier, criterion, criterion2):
ckpt = torch.load(model_path)
model.load_state_dict(ckpt['model_state_dict'])
model.eval()
top1_clean = utils.AverageMeter()
top1_occ = utils.AverageMeter()
losses_clean = utils.AverageMeter()
losses_occ = utils.AverageMeter()
sia_losses = utils.AverageMeter()
time_curr = time.time()
time_curr0 = time.time()
with torch.no_grad():
for batch_idx, (data, data_occ, _, target) in enumerate(val_loader, 1):
data, data_occ, target = data.to(device), data_occ.to(device), target.to(device)
f_masked, focc_masked, output, output_occ, _, _ = model(data, data_occ)
#f_masked_diff = torch.abs(f_masked - focc_masked)
#temp = torch.sum(f_masked_diff) / (f_masked.size(0) * 512 * 7 * 6)
sia_loss = criterion2(focc_masked, f_masked) # / (f_masked.size(0) * 512 * 7 * 6)
sia_losses.update(sia_loss.item(),data.size(0))
score = torch.mm(output, classifier.weight.t())
prec1 = utils.accuracy(score.data, target.data)
top1_clean.update(prec1[0].item(),data.size(0))
score_occ = torch.mm(output_occ, classifier.weight.t())
prec1_occ = utils.accuracy(score_occ.data, target.data)
top1_occ.update(prec1_occ[0].item(),data.size(0))
output = classifier(output, target)
loss_clean = criterion(output, target)
output_occ = classifier(output_occ, target)
loss_occ = criterion(output_occ, target)
loss = 0.5 * loss_clean + 0.5 * loss_occ + args.s_weight * sia_loss
#print(loss_clean.item(), loss_occ.item(), sia_loss.item())
if np.isnan(float(loss.item())):
raise ValueError('loss is nan while validating')
losses_clean.update(loss_clean.item(),data.size(0))
losses_occ.update(loss_occ.item(),data.size(0))
if batch_idx % 100 == 0:
time_used = time.time() - time_curr
print_with_time(
'Valid : [{}/{} ({:.0f}%)], SiaLoss: {:.6f}, CleanLoss: {:.6f}, OccLoss: {:.6f}, Prec: {:.4f}, Prec_occ: {:.4f}, Elapsed time: {:.4f}s({} iters)'.format(
batch_idx * len(data), len(val_loader.dataset), 100. * batch_idx / len(val_loader),
sia_losses.avg, losses_clean.avg, losses_occ.avg, top1_clean.avg, top1_occ.avg, time_used, 100)
)
time_curr = time.time()
# end of validation print
time_used = time.time() - time_curr0
print_with_time(
'Valid Summary : SiaLoss: {:.6f}, CleanLoss: {:.6f}, OccLoss: {:.6f}, Prec: {:.4f}, Prec_occ: {:.4f}, Elapsed time: {:.4f}s'.format(
sia_losses.avg, losses_clean.avg, losses_occ.avg, top1_clean.avg, top1_occ.avg, time_used)
)
def train(train_loader, model, classifier, criterion, criterion2, optimizer, epoch, step_size, base_lr):
for name, module in model.module.named_children():
if name in ['sia']:
module.train(True)
else:
module.train(False)
print_with_time('Epoch {} start training'.format(epoch))
time_curr = time.time()
time_curr0 = time.time()
loss_display = 0.0
top1_clean = utils.AverageMeter()
top1_occ = utils.AverageMeter()
losses_clean = utils.AverageMeter()
losses_occ = utils.AverageMeter()
sia_losses = utils.AverageMeter()
for batch_idx, (data, data_occ, _, target) in enumerate(train_loader, 1):
iteration = (epoch - 1) * len(train_loader) + batch_idx
adjust_learning_rate(optimizer, iteration, step_size, base_lr)
data, data_occ, target = data.to(device), data_occ.to(device), target.to(device)
f_masked, focc_masked, output, output_occ, f_diff, out = model(data, data_occ)
#----------------------------------------Calculate statistics--------------------------------------#
sia_loss = criterion2(focc_masked, f_masked) #/ (f_masked.size(0) * 512 * 7 * 6)
sia_losses.update(sia_loss.item(),data.size(0))
#f_masked_diff = torch.abs(f_masked - focc_masked)
#temp = torch.sum(f_masked_diff) / (f_masked.size(0) * 512 * 7 * 6)
#print(temp.item(),sia_loss.item(), f_masked.shape)
score = torch.mm(output, classifier.weight.t())
prec1 = utils.accuracy(score.data, target.data)
top1_clean.update(prec1[0].item(),data.size(0))
score_occ = torch.mm(output_occ, classifier.weight.t())
prec1_occ = utils.accuracy(score_occ.data, target.data)
top1_occ.update(prec1_occ[0].item(),data.size(0))
output = classifier(output, target)
loss_clean = criterion(output, target)
losses_clean.update(loss_clean.item(),data.size(0))
output_occ = classifier(output_occ, target)
loss_occ = criterion(output_occ, target)
losses_occ.update(loss_occ.item(),data.size(0))
#---------------------------------------------Backward----------------------------------------------#
loss = 0.5 * loss_clean + 0.5 * loss_occ + args.s_weight * sia_loss
#print(loss_clean.item(), loss_occ.item(), sia_loss.item())
if np.isnan(float(loss.item())):
raise ValueError('loss is nan while validating')
loss_display += loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
if iteration % 1600 == 0:
print(out[0,0,:,:])
if batch_idx % 100 == 0:
time_used = time.time() - time_curr
loss_display /= 100
print_with_time(
'Train Epoch: {} [{}/{} ({:.0f}%)]{}, SiaLoss: {:.6f}, ClsLoss: [{:.6f}/{:.6f}/{:.6f}], Prec: {:.4f}, Prec_occ: {:.4f}, Elapsed time: {:.4f}s, LR: {:.5f}/{:.5f}({} iters) INFO: [{}/{}/{}]'.format(
epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader),
iteration, sia_losses.avg, losses_clean.avg, losses_occ.avg, loss_display, top1_clean.avg, top1_occ.avg,
time_used, optimizer.param_groups[0]['lr'],optimizer.param_groups[1]['lr'],100, 'net2', args.s_weight,args.d_name)
)
time_curr = time.time()
loss_display = 0.0
time_used = time.time() - time_curr0
print_with_time(
'Train Summary : SiaLoss: {:.6f}, ClsLoss: [{:.6f}/{:.6f}], Prec: {:.4f}, Prec_occ: {:.4f}, Elapsed time: {:.4f}s, INFO: [{}/{}]'.format(
sia_losses.avg, losses_clean.avg, losses_occ.avg, top1_clean.avg, top1_occ.avg, time_used, 'net2', args.s_weight)
)
def print_with_time(string):
print(time.strftime("%Y-%m-%d %H:%M:%S ", time.localtime()) + string)
def adjust_learning_rate(optimizer, iteration, step_size, base_lr):
"""Sets the learning rate to the initial LR decayed by 10 each step size"""
if iteration in step_size:
lr = base_lr * (0.1 ** (step_size.index(iteration) + 1))
print_with_time('Adjust base learning rate to {}'.format(lr))
optimizer.param_groups[0]['lr'] = 0
optimizer.param_groups[1]['lr'] = lr
else:
pass
def save_ckpt(model, epoch, optimizer, save_name):
"""Save checkpoint"""
if isinstance(model, torch.nn.DataParallel):
model = model.module
torch.save({
'epoch': epoch,
'optim_state_dict': optimizer.state_dict(),
'model_state_dict': model.state_dict()}, save_name)
if __name__ == '__main__':
print(args)
main()