-
Notifications
You must be signed in to change notification settings - Fork 9
/
utils.py
142 lines (116 loc) · 4.67 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import numpy as np
import cv2
_CONTOUR_INDEX = 1 if cv2.__version__.split('.')[0] == '3' else 0
def check_box_convention(boxes, convention):
"""
Args:
boxes: numpy.ndarray(dtype=np.int or np.float, shape=(num_boxes, 4))
convention: string. One of ['x0y0x1y1', 'xywh'].
Raises:
RuntimeError if box does not meet the convention.
"""
if (boxes < 0).any():
raise RuntimeError("Box coordinates must be non-negative.")
if len(boxes.shape) == 1:
boxes = np.expand_dims(boxes, 0)
elif len(boxes.shape) != 2:
raise RuntimeError("Box array must have dimension (4) or "
"(num_boxes, 4).")
if boxes.shape[1] != 4:
raise RuntimeError("Box array must have dimension (4) or "
"(num_boxes, 4).")
if convention == 'x0y0x1y1':
widths = boxes[:, 2] - boxes[:, 0]
heights = boxes[:, 3] - boxes[:, 1]
elif convention == 'xywh':
widths = boxes[:, 2]
heights = boxes[:, 3]
else:
raise ValueError("Unknown convention {}.".format(convention))
if (widths < 0).any() or (heights < 0).any():
raise RuntimeError("Boxes do not follow the {} convention."
.format(convention))
def calculate_multiple_iou(box_a, box_b):
"""
Args:
box_a: numpy.ndarray(dtype=np.int, shape=(num_a, 4))
x0y0x1y1 convention.
box_b: numpy.ndarray(dtype=np.int, shape=(num_b, 4))
x0y0x1y1 convention.
Returns:
ious: numpy.ndarray(dtype=np.int, shape(num_a, num_b))
"""
num_a = box_a.shape[0]
num_b = box_b.shape[0]
check_box_convention(box_a, 'x0y0x1y1')
check_box_convention(box_b, 'x0y0x1y1')
# num_a x 4 -> num_a x num_b x 4
box_a = np.tile(box_a, num_b)
box_a = np.expand_dims(box_a, axis=1).reshape((num_a, num_b, -1))
# num_b x 4 -> num_b x num_a x 4
box_b = np.tile(box_b, num_a)
box_b = np.expand_dims(box_b, axis=1).reshape((num_b, num_a, -1))
# num_b x num_a x 4 -> num_a x num_b x 4
box_b = np.transpose(box_b, (1, 0, 2))
# num_a x num_b
min_x = np.maximum(box_a[:, :, 0], box_b[:, :, 0])
min_y = np.maximum(box_a[:, :, 1], box_b[:, :, 1])
max_x = np.minimum(box_a[:, :, 2], box_b[:, :, 2])
max_y = np.minimum(box_a[:, :, 3], box_b[:, :, 3])
# num_a x num_b
area_intersect = (np.maximum(0, max_x - min_x + 1)
* np.maximum(0, max_y - min_y + 1))
area_a = ((box_a[:, :, 2] - box_a[:, :, 0] + 1) *
(box_a[:, :, 3] - box_a[:, :, 1] + 1))
area_b = ((box_b[:, :, 2] - box_b[:, :, 0] + 1) *
(box_b[:, :, 3] - box_b[:, :, 1] + 1))
denominator = area_a + area_b - area_intersect
degenerate_indices = np.where(denominator <= 0)
denominator[degenerate_indices] = 1
ious = area_intersect / denominator
ious[degenerate_indices] = 0
return ious
def parse_xml_to_dict(xml):
"""
将xml文件解析成字典形式,参考tensorflow的recursive_parse_xml_to_dict
Args:
xml: xml tree obtained by parsing XML file contents using lxml.etree
Returns:
Python dictionary holding XML contents.
"""
if len(xml) == 0: # 遍历到底层,直接返回tag对应的信息
return {xml.tag: xml.text}
result = {}
for child in xml:
child_result = parse_xml_to_dict(child) # 递归遍历标签信息
if child.tag != 'object':
result[child.tag] = child_result[child.tag]
else:
if child.tag not in result: # 因为object可能有多个,所以需要放入列表里
result[child.tag] = []
result[child.tag].append(child_result[child.tag])
return {xml.tag: result}
def scoremap2bbox(scoremap, threshold, multi_contour_eval=False):
height, width = scoremap.shape
scoremap_image = np.expand_dims((scoremap * 255).astype(np.uint8), 2)
_, thr_gray_heatmap = cv2.threshold(
src=scoremap_image,
thresh=int(threshold * np.max(scoremap_image)),
maxval=255,
type=cv2.THRESH_BINARY)
contours = cv2.findContours(
image=thr_gray_heatmap,
mode=cv2.RETR_TREE,
method=cv2.CHAIN_APPROX_SIMPLE)[_CONTOUR_INDEX]
if len(contours) == 0:
return np.asarray([[0, 0, 0, 0]]), 1
if not multi_contour_eval:
contours = [max(contours, key=cv2.contourArea)]
estimated_boxes = []
for contour in contours:
x, y, w, h = cv2.boundingRect(contour)
x0, y0, x1, y1 = x, y, x + w, y + h
x1 = min(x1, width - 1)
y1 = min(y1, height - 1)
estimated_boxes.append([x0, y0, x1, y1])
return np.asarray(estimated_boxes), len(contours)