forked from gitesei/willard-chandler
-
Notifications
You must be signed in to change notification settings - Fork 1
/
gds.py
180 lines (168 loc) · 8.18 KB
/
gds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import numpy as np
import pandas as pd
import mdtraj as md
from scipy.optimize import curve_fit
import sys
from time import time
import itertools
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument('-s',dest='top')
parser.add_argument('-t',dest='traj')
parser.add_argument('-b',dest='begin',type=int)
parser.add_argument('-e',dest='every',type=int)
parser.add_argument('-m',dest='molecules',nargs='+')
parser.add_argument('-l',dest='layers',nargs='+',type=float)
parser.add_argument('-o',dest='out')
args = parser.parse_args()
def initialize(filename,top,bw,molecules,nskip,layers):
traj = md.load_xtc(filename,top=top,atom_indices=top.top.select('name O'))[nskip:]
box = traj.unitcell_lengths.mean(0)
com = md.compute_center_of_mass(traj)
z_com = np.repeat(com[:,2],traj.n_atoms)
z_com = z_com.reshape(traj.n_frames,-1)
z_pos = traj.xyz[:,:,2] - z_com
hist, edges = np.histogram(z_pos,bins=np.arange(-box[2]*.5,box[2]*.5,bw))
z = edges[:-1]+(edges[1]-edges[0])/2.
hist = hist/(bw*box[0]*box[1]*6.022*0.1*traj.n_frames)
z_min = np.floor(z[hist>hist.max()/2].min()).astype(int)
z_max = np.ceil(z[hist>hist.max()/2].max()).astype(int)
z_mid = (z_max+z_min)*.5
rho0 = hist[np.logical_and(z>z_min+2,z<z_max-2)].mean()
hyptan = lambda x,gds,d : rho0/2*(1-np.tanh((x-gds)/d))
popt,pcov = curve_fit(hyptan,z[z>z_mid],hist[z>z_mid],p0=[z_max,.1])
z_gds1 = popt[0]
thickness1 = popt[1]
popt,pcov = curve_fit(hyptan,-z[z<z_mid],hist[z<z_mid],p0=[-z_min,.1])
z_gds0 = -popt[0]
thickness2 = popt[1]
level = 0.5*hist[np.logical_and(z>z_min+2,z<z_max-2)].mean()
edges = np.arange(-1,z_max-z_min+2,bw*4)
z = edges[:-1]+(edges[1]-edges[0])/2.
thetaedges = np.arange(0,181,2)
theta = thetaedges[:-1]+(thetaedges[1]-thetaedges[0])/2.
data = {}
for molecule in molecules:
atoms = molecule.split(' ')
print(atoms)
if len(atoms)==1:
data[atoms[0]] = {'upper': np.zeros(z.size), 'lower': np.zeros(z.size)}
elif len(atoms)==3:
for atom in atoms[::2]:
data[atom] = {'upper': np.zeros(z.size), 'lower': np.zeros(z.size)}
data[atoms[1]] = {'upper': dict(cosine=np.zeros(z.size), conc=np.zeros(z.size),
pair=atoms[::2], theta=np.zeros((len(layers)-1,theta.size))),
'lower': dict(cosine=np.zeros(z.size), conc=np.zeros(z.size),
pair=atoms[::2], theta=np.zeros((len(layers)-1,theta.size)))}
elif len(atoms)==2:
data[atoms[0]] = {'upper': np.zeros(z.size), 'lower': np.zeros(z.size)}
data[atoms[1]] = {'upper': dict(cosine=np.zeros(z.size), conc=np.zeros(z.size),
pair=atoms, theta=np.zeros(theta.size), all=np.empty(0), ndang=np.empty(0)),
'lower': dict(cosine=np.zeros(z.size), conc=np.zeros(z.size),
pair=atoms, theta=np.zeros(theta.size), all=np.empty(0), ndang=np.empty(0))}
params = {"box": box,
"bw": bw*4,
"n_frames": traj.n_frames+nskip,
"edges": edges,
"theta": theta,
"z": z,
"level": level,
"layers": layers,
"z_gds": [z_gds0,z_gds1],
"thickness": [thickness1,thickness2],
"data": data}
del traj
return pd.Series(params)
def calc_profiles(frame,params,label,sign,layers):
box, edges, data, bw = params['box'], params['edges'], params['data'], params['bw']
z_gds = params['z_gds'][(sign+1)//2]
toM = 1. / (bw*box[0]*box[1]*6.022*0.1)
for atom, value in data.items():
oxygens = frame.top.select('name O')
z_com = md.compute_center_of_mass(frame.atom_slice(oxygens))[:,2]
z_pos = frame.atom_slice(frame.top.select('name '+atom)).xyz[0,:,2] - z_com
dist = (z_gds - z_pos)*sign
if type(value[label]) == dict:
hist, _ = np.histogram(dist,bins=edges,density=False)
value[label]['conc'] += hist * toM
profile_cosine(frame,dist,atom,value[label],sign,edges,toM,layers)
if value[label]['theta'].ndim == 1:
selOSN = frame.top.select('name O or name S1 or name N3')
z_pos = frame.atom_slice(selOSN).xyz[0,:,2] - z_com
distOSN = (z_gds - z_pos)*sign
mask = np.logical_and(dist>-.3,dist<.3)
idx = np.asarray(oxygens)[mask]
mask = np.logical_and(distOSN>-.3,distOSN<.7)
idxOSN = np.asarray(selOSN)[mask]
dangling(frame,value[label],sign,dist,distOSN,idx,idxOSN)
else:
hist, _ = np.histogram(dist,bins=edges,density=False)
value[label] += hist * toM
def profile_cosine(frame,dist,atom,dictionary,sign,edges,toM,layers):
selection_string = 'name '+dictionary['pair'][0]+' or name '+dictionary['pair'][1]
pair = np.array(frame.top.select(selection_string)).reshape(-1,2)
vec = md.compute_displacements(frame,pair).reshape(-1,3)
cosine = vec[:,2] / np.linalg.norm(vec,axis=1) * sign
if atom=='C2':
cosine = -cosine
hist, _ = np.histogram(dist,bins=edges,weights=cosine,density=False)
dictionary['cosine'] += hist * toM
if dictionary['theta'].ndim > 1:
angle = np.arccos(np.clip(cosine,-1,1))/np.pi*180
for i in range(len(layers)-1):
mask = np.logical_and(dist>layers[i],dist<layers[i+1])
hist, _ = np.histogram(angle[mask],bins=np.arange(0,181,2),density=False)
dictionary['theta'][i] += hist
def dangling(frame,dictionary,sign,dist,distOSN,idx,idxOSN):
pair_ox = np.asarray(list(itertools.product(idx, idxOSN)))
# remove pairs of same index
pair_ox = pair_ox[np.std(pair_ox,axis=1)!=0]
dist_ox = md.compute_distances(frame,pair_ox).reshape(idx.size,-1)
h1o = np.c_[idx,idx+1]
h2o = np.c_[idx,idx+2]
# compute H-O vectors
vec_h1o = md.compute_displacements(frame,h1o).reshape(-1,3)
vec_h2o = md.compute_displacements(frame,h2o).reshape(-1,3)
cosine_h1o = vec_h1o[:,2] / np.linalg.norm(vec_h1o,axis=1) * sign
cosine_h2o = vec_h2o[:,2] / np.linalg.norm(vec_h2o,axis=1) * sign
angle_h1o = np.arccos(np.clip(cosine_h1o,-1,1))/np.pi*180
angle_h2o = np.arccos(np.clip(cosine_h2o,-1,1))/np.pi*180
h1ox = np.c_[np.asarray(pair_ox)[:,0]+1,np.asarray(pair_ox)[:,0],np.asarray(pair_ox)[:,1]]
h2ox = np.c_[np.asarray(pair_ox)[:,0]+2,np.asarray(pair_ox)[:,0],np.asarray(pair_ox)[:,1]]
# compute H-O...O angles
angle_h1ox = md.compute_angles(frame,h1ox).reshape(idx.size,-1)/np.pi*180
angle_h2ox = md.compute_angles(frame,h2ox).reshape(idx.size,-1)/np.pi*180
# selection of dangling OH based on R-beta definition (DOI: 10.1021/acs.jctc.7b00566)
Rc = dist_ox<=.35
beta1 = angle_h1ox<=50
beta2 = angle_h2ox<=50
angles_ho = np.append(angle_h1o[np.sum(beta1*Rc,axis=1)==0],angle_h2o[np.sum(beta2*Rc,axis=1)==0])
dictionary['ndang'] = np.append(dictionary['ndang'],angles_ho.size)
dictionary['all'] = np.append(dictionary['all'],idx.size)
hist, _ = np.histogram(angles_ho,bins=np.arange(0,181,2),density=False)
dictionary['theta'] += hist
t1 = time()
print('molecules',args.molecules)
print('layers',args.layers)
top = md.load(args.top)
params = initialize(args.traj,top,0.005,args.molecules,args.begin,args.layers)
cnt = 0
for i in range(args.begin,params['n_frames'],args.every):
frame = md.load_frame(args.traj, i, top=top)
calc_profiles(frame,params,label='upper',sign=1,layers=args.layers)
calc_profiles(frame,params,label='lower',sign=-1,layers=args.layers)
cnt += 1
for molecule in args.molecules:
atoms = molecule.split(' ')
for atom in atoms:
if type(params['data'][atom]['upper']) == dict:
params['data'][atom]['upper']['conc'] /= cnt
params['data'][atom]['lower']['conc'] /= cnt
params['data'][atom]['upper']['cosine'] /= cnt
params['data'][atom]['lower']['cosine'] /= cnt
else:
params['data'][atom]['upper'] /= cnt
params['data'][atom]['lower'] /= cnt
pd.to_pickle(params,args.out)
t2 = time()
print((t2-t1)/3600)