forked from tonylee19544/leaves
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlgensemble_io.go
666 lines (611 loc) · 19.6 KB
/
lgensemble_io.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
package leaves
import (
"bufio"
"encoding/json"
"fmt"
"io"
"os"
"strconv"
"strings"
"github.com/dmitryikh/leaves/transformation"
"github.com/dmitryikh/leaves/util"
)
type lgEnsembleJSON struct {
Name string `json:"name"`
Version string `json:"version"`
NumClasses int `json:"num_class"`
NumTreesPerIteration int `json:"num_tree_per_iteration"`
MaxFeatureIdx int `json:"max_feature_idx"`
Trees []json.RawMessage `json:"tree_info"`
// TODO: lightgbm should support the next fields
// AverageOutput bool `json:"average_output"`
// Objective string `json:"objective"`
}
type lgTreeJSON struct {
NumLeaves int `json:"num_leaves"`
NumCat uint32 `json:"num_cat"`
// Unused fields:
// TreeIndex uint32 `json:"tree_index"`
// Shrinkage float64 `json:"shrinkage"`
RootRaw json.RawMessage `json:"tree_structure"`
Root interface{}
}
type lgNodeJSON struct {
SplitIndex uint32 `json:"split_index"`
SplitFeature uint32 `json:"split_feature"`
// Threshold could be float64 (for numerical decision) or string (for categorical, example "10||100||400")
Threshold interface{} `json:"threshold"`
DecisionType string `json:"decision_type"`
DefaultLeft bool `json:"default_left"`
MissingType string `json:"missing_type"`
LeftChildRaw json.RawMessage `json:"left_child"`
RightChildRaw json.RawMessage `json:"right_child"`
LeftChild interface{}
RightChild interface{}
}
// lgObjective keeps parsed data from 'objective' field of lightgbm txt format
// 'multiclass num_class:13' parsed to
// lgObjective{name: 'multiclass', param: 'num_class', value:13}
type lgObjective struct {
name string
param string
value int
}
func lgObjectiveParse(objective string) (lgObjective, error) {
tokens := strings.Split(objective, " ")
objectiveStruct := lgObjective{}
errorMsg := fmt.Errorf("unexpected objective field: '%s'", objective)
if len(tokens) != 2 {
return objectiveStruct, errorMsg
}
objectiveStruct.name = tokens[0]
paramTokens := strings.Split(tokens[1], ":")
if len(paramTokens) != 2 {
return objectiveStruct, errorMsg
}
objectiveStruct.param = paramTokens[0]
value, err := strconv.Atoi(paramTokens[1])
if err != nil {
return objectiveStruct, errorMsg
}
objectiveStruct.value = value
return objectiveStruct, nil
}
func convertMissingType(decisionType uint32) (uint8, error) {
missingTypeOrig := (decisionType >> 2) & 3
missingType := uint8(0)
if missingTypeOrig == 0 {
// default value
} else if missingTypeOrig == 1 {
missingType = missingZero
} else if missingTypeOrig == 2 {
missingType = missingNan
} else {
return 0, fmt.Errorf("unknown missing type = %d", missingTypeOrig)
}
return missingType, nil
}
var stringToMissingType = map[string]uint8{
"None": 0,
"Zero": missingZero,
"NaN": missingNan,
}
func lgTreeFromReader(reader *bufio.Reader) (lgTree, error) {
t := lgTree{}
params, err := util.ReadParamsUntilBlank(reader)
if err != nil {
return t, err
}
numCategorical, err := params.ToInt("num_cat")
if err != nil {
return t, err
}
t.nCategorical = uint32(numCategorical)
numLeaves, err := params.ToInt("num_leaves")
if err != nil {
return t, err
}
if numLeaves < 1 {
return t, fmt.Errorf("num_leaves < 1")
}
numNodes := numLeaves - 1
leafValues, err := params.ToFloat64Slice("leaf_value")
if err != nil {
return t, err
}
t.leafValues = leafValues
if numLeaves == 1 {
// special case - constant value tree
return t, nil
}
leftChilds, err := params.ToInt32Slice("left_child")
if err != nil {
return t, err
}
rightChilds, err := params.ToInt32Slice("right_child")
if err != nil {
return t, err
}
decisionTypes, err := params.ToUint32Slice("decision_type")
if err != nil {
return t, err
}
splitFeatures, err := params.ToUint32Slice("split_feature")
if err != nil {
return t, err
}
thresholds, err := params.ToFloat64Slice("threshold")
if err != nil {
return t, err
}
catThresholds := make([]uint32, 0)
catBoundaries := make([]uint32, 0)
if numCategorical > 0 {
// first element set to zero for consistency
t.catBoundaries = make([]uint32, 1)
catThresholds, err = params.ToUint32Slice("cat_threshold")
if err != nil {
return t, err
}
catBoundaries, err = params.ToUint32Slice("cat_boundaries")
if err != nil {
return t, err
}
}
createNumericalNode := func(idx int32) (lgNode, error) {
node := lgNode{}
missingType, err := convertMissingType(decisionTypes[idx])
if err != nil {
return node, err
}
defaultType := uint8(0)
if decisionTypes[idx]&(1<<1) > 0 {
defaultType = defaultLeft
}
node = numericalNode(splitFeatures[idx], missingType, thresholds[idx], defaultType)
if leftChilds[idx] < 0 {
node.Flags |= leftLeaf
node.Left = uint32(^leftChilds[idx])
}
if rightChilds[idx] < 0 {
node.Flags |= rightLeaf
node.Right = uint32(^rightChilds[idx])
}
return node, nil
}
createCategoricalNode := func(idx int32) (lgNode, error) {
node := lgNode{}
missingType, err := convertMissingType(decisionTypes[idx])
if err != nil {
return node, err
}
catIdx := uint32(thresholds[idx])
catType := uint8(0)
bitsetSize := catBoundaries[catIdx+1] - catBoundaries[catIdx]
thresholdSlice := catThresholds[catBoundaries[catIdx]:catBoundaries[catIdx+1]]
nBits := util.NumberOfSetBits(thresholdSlice)
if nBits == 0 {
return node, fmt.Errorf("no bits set")
} else if nBits == 1 {
i, err := util.FirstNonZeroBit(thresholdSlice)
if err != nil {
return node, fmt.Errorf("not reached error")
}
catIdx = i
catType = catOneHot
} else if bitsetSize == 1 {
catIdx = catThresholds[catBoundaries[catIdx]]
catType = catSmall
} else {
// regular case with large bitset
catIdx = uint32(len(t.catBoundaries) - 1)
t.catThresholds = append(t.catThresholds, thresholdSlice...)
t.catBoundaries = append(t.catBoundaries, uint32(len(t.catThresholds)))
}
node = categoricalNode(splitFeatures[idx], missingType, catIdx, catType)
if leftChilds[idx] < 0 {
node.Flags |= leftLeaf
node.Left = uint32(^leftChilds[idx])
}
if rightChilds[idx] < 0 {
node.Flags |= rightLeaf
node.Right = uint32(^rightChilds[idx])
}
return node, nil
}
createNode := func(idx int32) (lgNode, error) {
if decisionTypes[idx]&1 > 0 {
return createCategoricalNode(idx)
}
return createNumericalNode(idx)
}
origNodeIdxStack := make([]uint32, 0, numNodes)
convNodeIdxStack := make([]uint32, 0, numNodes)
visited := make([]bool, numNodes)
t.nodes = make([]lgNode, 0, numNodes)
node, err := createNode(0)
if err != nil {
return t, err
}
t.nodes = append(t.nodes, node)
origNodeIdxStack = append(origNodeIdxStack, 0)
convNodeIdxStack = append(convNodeIdxStack, 0)
for len(origNodeIdxStack) > 0 {
convIdx := convNodeIdxStack[len(convNodeIdxStack)-1]
if t.nodes[convIdx].Flags&rightLeaf == 0 {
origIdx := rightChilds[origNodeIdxStack[len(origNodeIdxStack)-1]]
if !visited[origIdx] {
node, err := createNode(origIdx)
if err != nil {
return t, err
}
t.nodes = append(t.nodes, node)
convNewIdx := len(t.nodes) - 1
convNodeIdxStack = append(convNodeIdxStack, uint32(convNewIdx))
origNodeIdxStack = append(origNodeIdxStack, uint32(origIdx))
visited[origIdx] = true
t.nodes[convIdx].Right = uint32(convNewIdx)
continue
}
}
if t.nodes[convIdx].Flags&leftLeaf == 0 {
origIdx := leftChilds[origNodeIdxStack[len(origNodeIdxStack)-1]]
if !visited[origIdx] {
node, err := createNode(origIdx)
if err != nil {
return t, err
}
t.nodes = append(t.nodes, node)
convNewIdx := len(t.nodes) - 1
convNodeIdxStack = append(convNodeIdxStack, uint32(convNewIdx))
origNodeIdxStack = append(origNodeIdxStack, uint32(origIdx))
visited[origIdx] = true
t.nodes[convIdx].Left = uint32(convNewIdx)
continue
}
}
origNodeIdxStack = origNodeIdxStack[:len(origNodeIdxStack)-1]
convNodeIdxStack = convNodeIdxStack[:len(convNodeIdxStack)-1]
}
return t, nil
}
// LGEnsembleFromReader reads LightGBM model from `reader`
func LGEnsembleFromReader(reader *bufio.Reader, loadTransformation bool) (*Ensemble, error) {
e := &lgEnsemble{name: "lightgbm.gbdt"}
params, err := util.ReadParamsUntilBlank(reader)
if err != nil {
return nil, err
}
if err := params.Compare("version", "v2"); err != nil {
if err := params.Compare("version", "v3"); err != nil {
return nil, err
}
}
nClasses, err := params.ToInt("num_class")
if err != nil {
return nil, err
}
nTreePerIteration, err := params.ToInt("num_tree_per_iteration")
if err != nil {
return nil, err
}
if nClasses != nTreePerIteration {
return nil, fmt.Errorf("meet case when num_class (%d) != num_tree_per_iteration (%d)", nClasses, nTreePerIteration)
} else if nClasses < 1 {
return nil, fmt.Errorf("num_class (%d) should be > 0", nClasses)
} else if nTreePerIteration < 1 {
return nil, fmt.Errorf("num_tree_per_iteration (%d) should be > 0", nTreePerIteration)
}
e.nRawOutputGroups = nClasses
maxFeatureIdx, err := params.ToInt("max_feature_idx")
if err != nil {
return nil, err
}
e.MaxFeatureIdx = maxFeatureIdx
if params.Contains("average_output") {
e.name = "lightgbm.rf"
e.averageOutput = true
}
treeSizesStr, isFound := params["tree_sizes"]
if !isFound {
return nil, fmt.Errorf("no tree_sizes field")
}
treeSizes := strings.Split(treeSizesStr, " ")
// NOTE: we rely on the fact that size of tree_sizes data is equal to number of trees
nTrees := len(treeSizes)
if nTrees == 0 {
return nil, fmt.Errorf("no trees in file (based on tree_sizes value)")
} else if nTrees%e.nRawOutputGroups != 0 {
return nil, fmt.Errorf("wrong number of trees (%d) for number of class (%d)", nTrees, e.nRawOutputGroups)
}
var transform transformation.Transform
transform = &transformation.TransformRaw{e.nRawOutputGroups}
// NOTE: it seems that we don't nee to apply transformation to random forest models
// TODO: check it
if loadTransformation && !e.averageOutput {
objectiveStr, err := params.ToString("objective")
if err != nil {
return nil, err
}
if !strings.HasPrefix(objectiveStr, "regression") { // no transformation for regression
objectiveStruct, err := lgObjectiveParse(objectiveStr)
if err != nil {
return nil, err
}
if objectiveStruct.name == "binary" && objectiveStruct.param == "sigmoid" {
if objectiveStruct.value != 1 {
return nil, fmt.Errorf("got sigmoid with value != 1 (got %d)", objectiveStruct.value)
}
transform = &transformation.TransformLogistic{}
} else if objectiveStruct.name == "multiclass" && objectiveStruct.param == "num_class" {
if objectiveStruct.value != e.nRawOutputGroups {
return nil, fmt.Errorf("got multiclass num_class != %d (got %d)", e.nRawOutputGroups, objectiveStruct.value)
}
transform = &transformation.TransformSoftmax{objectiveStruct.value}
// multiclass num_class:13
} else {
return nil, fmt.Errorf("unknown transformation function '%s'", objectiveStr)
}
}
}
e.Trees = make([]lgTree, 0, nTrees)
for i := 0; i < nTrees; i++ {
tree, err := lgTreeFromReader(reader)
if err != nil {
return nil, fmt.Errorf("error while reading %d tree: %s", i, err.Error())
}
e.Trees = append(e.Trees, tree)
}
return &Ensemble{e, transform}, nil
}
// LGEnsembleFromFile reads LightGBM model from binary file
func LGEnsembleFromFile(filename string, loadTransformation bool) (*Ensemble, error) {
reader, err := os.Open(filename)
if err != nil {
return nil, err
}
defer reader.Close()
bufReader := bufio.NewReader(reader)
return LGEnsembleFromReader(bufReader, loadTransformation)
}
// unmarshalNode recuirsively unmarshal nodes data in the tree from JSON raw data. Tree's node can be:
// 1. leaf node (contains field 'field_value')
// 2. node with decision rule (contains field from `lgNodeJSON` structure)
func unmarshalNode(raw []byte) (interface{}, error) {
node := &lgNodeJSON{}
err := json.Unmarshal(raw, node)
if err != nil {
return nil, err
}
// dirty way to check that we really load a lgNodeJSON struct from raw data
if node.MissingType == "" {
// this is no tree node structure, then it should be map with "leaf_value" record
data := make(map[string]interface{})
err = json.Unmarshal(raw, &data)
if err != nil {
return nil, err
}
value, ok := data["leaf_value"].(float64)
if !ok {
return nil, fmt.Errorf("unknown tree")
}
return value, nil
}
node.LeftChild, err = unmarshalNode(node.LeftChildRaw)
if err != nil {
return nil, err
}
node.RightChild, err = unmarshalNode(node.RightChildRaw)
if err != nil {
return nil, err
}
return node, nil
}
// unmarshalTree unmarshal tree data from JSON raw data and convert it to `lgTree` structure
func unmarshalTree(raw []byte) (lgTree, error) {
t := lgTree{}
treeJSON := &lgTreeJSON{}
err := json.Unmarshal(raw, treeJSON)
if err != nil {
return t, err
}
t.nCategorical = treeJSON.NumCat
if t.nCategorical > 0 {
// first element set to zero for consistency
t.catBoundaries = make([]uint32, 1)
}
if treeJSON.NumLeaves < 1 {
return t, fmt.Errorf("num_leaves < 1")
}
numNodes := treeJSON.NumLeaves - 1
treeJSON.Root, err = unmarshalNode(treeJSON.RootRaw)
if err != nil {
return t, err
}
if value, ok := treeJSON.Root.(float64); ok {
// special case - constant value tree
t.leafValues = append(t.leafValues, value)
return t, nil
}
createNumericalNode := func(nodeJSON *lgNodeJSON) (lgNode, error) {
node := lgNode{}
missingType, isFound := stringToMissingType[nodeJSON.MissingType]
if !isFound {
return node, fmt.Errorf("unknown missing_type '%s'", nodeJSON.MissingType)
}
defaultType := uint8(0)
if nodeJSON.DefaultLeft {
defaultType = defaultLeft
}
threshold, ok := nodeJSON.Threshold.(float64)
if !ok {
return node, fmt.Errorf("unexpected Threshold type %T", nodeJSON.Threshold)
}
node = numericalNode(nodeJSON.SplitFeature, missingType, threshold, defaultType)
if value, ok := nodeJSON.LeftChild.(float64); ok {
node.Flags |= leftLeaf
node.Left = uint32(len(t.leafValues))
t.leafValues = append(t.leafValues, value)
}
if value, ok := nodeJSON.RightChild.(float64); ok {
node.Flags |= rightLeaf
node.Right = uint32(len(t.leafValues))
t.leafValues = append(t.leafValues, value)
}
return node, nil
}
createCategoricalNode := func(nodeJSON *lgNodeJSON) (lgNode, error) {
node := lgNode{}
missingType, isFound := stringToMissingType[nodeJSON.MissingType]
if !isFound {
return node, fmt.Errorf("unknown missing_type '%s'", nodeJSON.MissingType)
}
thresholdString, ok := nodeJSON.Threshold.(string)
if !ok {
return node, fmt.Errorf("unexpected Threshold type %T", nodeJSON.Threshold)
}
tokens := strings.Split(thresholdString, "||")
nBits := len(tokens)
catIdx := uint32(0)
catType := uint8(0)
if nBits == 0 {
return node, fmt.Errorf("no bits set")
} else if nBits == 1 {
value, err := strconv.Atoi(tokens[0])
if err != nil {
return node, fmt.Errorf("can't convert %s: %s", tokens[0], err.Error())
}
catIdx = uint32(value)
catType = catOneHot
} else {
thresholdValues := make([]int, len(tokens))
for i, valueStr := range tokens {
value, err := strconv.Atoi(valueStr)
if err != nil {
return node, fmt.Errorf("can't convert %s: %s", valueStr, err.Error())
}
thresholdValues[i] = value
}
bitset := util.ConstructBitset(thresholdValues)
if len(bitset) == 1 {
catIdx = bitset[0]
catType = catSmall
} else {
// regular case with large bitset
catIdx = uint32(len(t.catBoundaries) - 1)
t.catThresholds = append(t.catThresholds, bitset...)
t.catBoundaries = append(t.catBoundaries, uint32(len(t.catThresholds)))
}
}
node = categoricalNode(nodeJSON.SplitFeature, missingType, catIdx, catType)
if value, ok := nodeJSON.LeftChild.(float64); ok {
node.Flags |= leftLeaf
node.Left = uint32(len(t.leafValues))
t.leafValues = append(t.leafValues, value)
}
if value, ok := nodeJSON.RightChild.(float64); ok {
node.Flags |= rightLeaf
node.Right = uint32(len(t.leafValues))
t.leafValues = append(t.leafValues, value)
}
return node, nil
}
createNode := func(nodeJSON *lgNodeJSON) (lgNode, error) {
if nodeJSON.DecisionType == "==" {
return createCategoricalNode(nodeJSON)
} else if nodeJSON.DecisionType == "<=" {
return createNumericalNode(nodeJSON)
} else {
return lgNode{}, fmt.Errorf("unknown decision type '%s'", nodeJSON.DecisionType)
}
}
type StackData struct {
// pointer to parent's Left/RightChild field
parentPtr *uint32
nodeJSON *lgNodeJSON
}
stack := make([]StackData, 0, numNodes)
if root, ok := treeJSON.Root.(*lgNodeJSON); ok {
stack = append(stack, StackData{nil, root})
} else {
return t, fmt.Errorf("unexpected type of Root: %T", treeJSON.Root)
}
// NOTE: we rely on fact that t.nodes won't be reallocated (`parentPtr` points to its data)
t.nodes = make([]lgNode, 0, numNodes)
for len(stack) > 0 {
stackData := stack[len(stack)-1]
stack = stack[:len(stack)-1]
node, err := createNode(stackData.nodeJSON)
if err != nil {
return t, err
}
if stackData.parentPtr != nil {
*stackData.parentPtr = uint32(len(t.nodes))
}
t.nodes = append(t.nodes, node)
if node.Flags&leftLeaf == 0 {
if left, ok := stackData.nodeJSON.LeftChild.(*lgNodeJSON); ok {
stack = append(stack, StackData{&t.nodes[len(t.nodes)-1].Left, left})
} else if _, ok := stackData.nodeJSON.LeftChild.(float64); ok {
} else {
return t, fmt.Errorf("unexpected left child type %T", stackData.nodeJSON.LeftChild)
}
}
if node.Flags&rightLeaf == 0 {
if right, ok := stackData.nodeJSON.RightChild.(*lgNodeJSON); ok {
stack = append(stack, StackData{&t.nodes[len(t.nodes)-1].Right, right})
} else if _, ok := stackData.nodeJSON.RightChild.(float64); ok {
} else {
return t, fmt.Errorf("unexpected right child type %T", stackData.nodeJSON.RightChild)
}
}
}
return t, nil
}
// LGEnsembleFromJSON reads LightGBM model from stream with JSON data
func LGEnsembleFromJSON(reader io.Reader, loadTransformation bool) (*Ensemble, error) {
data := &lgEnsembleJSON{}
if loadTransformation {
return nil, fmt.Errorf("transformation functions are not supported for LightGBM models")
}
dec := json.NewDecoder(reader)
err := dec.Decode(data)
if err != nil {
return nil, err
}
e := &lgEnsemble{name: "lightgbm.gbdt"}
if data.Name != "tree" {
return nil, fmt.Errorf("expected 'name' field = 'tree' (got: '%s')", data.Name)
}
if data.Version != "v2" {
return nil, fmt.Errorf("expected 'version' field = 'v2' (got: '%s')", data.Version)
}
if data.NumClasses != data.NumTreesPerIteration {
return nil, fmt.Errorf(
"meet case when num_class (%d) != num_tree_per_iteration (%d)",
data.NumClasses,
data.NumTreesPerIteration,
)
} else if data.NumClasses < 1 {
return nil, fmt.Errorf("num_class (%d) should be > 0", data.NumClasses)
} else if data.NumTreesPerIteration < 1 {
return nil, fmt.Errorf("num_tree_per_iteration (%d) should be > 0", data.NumTreesPerIteration)
}
e.nRawOutputGroups = data.NumClasses
e.MaxFeatureIdx = data.MaxFeatureIdx
nTrees := len(data.Trees)
if nTrees == 0 {
return nil, fmt.Errorf("no trees in file (based on tree_sizes value)")
} else if nTrees%e.nRawOutputGroups != 0 {
return nil, fmt.Errorf("wrong number of trees (%d) for number of class (%d)", nTrees, e.nRawOutputGroups)
}
e.Trees = make([]lgTree, 0, nTrees)
for i := 0; i < nTrees; i++ {
tree, err := unmarshalTree(data.Trees[i])
if err != nil {
return nil, fmt.Errorf("error while reading %d tree: %s", i, err.Error())
}
e.Trees = append(e.Trees, tree)
}
return &Ensemble{e, &transformation.TransformRaw{e.nRawOutputGroups}}, nil
}