-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_agent.py
352 lines (308 loc) · 14.3 KB
/
train_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
# -*- coding: utf-8 -*-
# @Time : 9/8/21 3:44 PM
# @Author : Tingfeng Li, <tl601@cs.rutgers.edu>, Rutgers University.
import os, wandb, torch
import numpy as np
from opts import parser
import torch.nn.functional as F
from itertools import product
from util import joint_transforms as t
from util.augmentations import Compose
from torch.distributions import Categorical
from util.data_aug import Resize
from datasets.clutter_mnist import MNIST_Corrupted
from datasets.cub import CUB
from datasets.coco_onecls import CocoDataset
from models.mnist_model import AutoencoderProj_ag
from models.agent_model import Agent
from models.cub_model import Encoder_CUB
from util.actions import Actor
from util.utils import box_iou
from RL import get_policy_loss
DEBUG = False
def init_dataloader():
kwargs = {'num_workers': 8, 'pin_memory': True}
if args.dataset == 'mnist':
trainset = MNIST_Corrupted(root='.', train=True, digit=args.digit,
bg_name=args.bg_name,
sample_size=args.sample_size,
datapath='/research/cbim/vast/tl601/Dataset/Synthesis_mnist_github',
transform=transform)
testset = MNIST_Corrupted(root='.', train=False, digit=args.digit,
bg_name=args.bg_name,
datapath='/research/cbim/vast/tl601/Dataset/Synthesis_mnist_github',
transform=transform)
elif args.dataset == 'cub':
assert (args.img_size == 224)
trainset = CUB('/research/cbim/vast/tl601/Dataset/CUB_200_2011',
mode='base', bg_name=args.bg_name, img_size=args.img_size, transform=transform)
testset = CUB('/research/cbim/vast/tl601/Dataset/CUB_200_2011',
mode='val', bg_name=args.bg_name, img_size=args.img_size, transform=transform)
elif args.dataset == 'coco':
assert (args.img_size == 224)
trainset = CocoDataset(root='/research/cbim/vast/tl601/Dataset/coco/train2017',
annFile='/research/cbim/vast/tl601/Dataset/coco/annotations/instances_train2017.json',
selected_cls=args.sel_cls, transforms=transform)
testset = CocoDataset(root='/research/cbim/vast/tl601/Dataset/coco/val2017',
annFile='/research/cbim/vast/tl601/Dataset/coco/annotations/instances_val2017.json',
selected_cls=args.sel_cls, transforms=transform)
train_loader = torch.utils.data.DataLoader(
trainset, batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
testset, batch_size=args.batch_size, shuffle=False, **kwargs)
print('total train image: ', len(train_loader.dataset), ' test image: ',
len(test_loader.dataset))
return train_loader, test_loader
def init_model():
if args.dataset == 'mnist':
net = AutoencoderProj_ag(channel=1, pooling_size=args.pooling_size,
dim=args.dim, pooling_mode=args.pooling_mode).to(device)
elif args.dataset == 'cub' or args.dataset == 'coco':
net = Encoder_CUB(pooling_size=args.pooling_size, pretrained=True, base=args.backbone,
dim=args.dim, pooling_mode=args.pooling_mode).to(device)
agent = Agent(rnn=args.rnn, dim=args.dim_ag, poolsize=args.pooling_size,
num_class=args.num_act, hidden_size=args.hidden_size).to(device)
'''load pretrained net'''
if args.pretrained != '':
ckpt = torch.load(os.path.join('/research/cbim/vast/tl601/results/loc-agent/', args.pretrained))
mnist_pretrained_dict = ckpt['state_dict']
embeddingnet_dict = net.state_dict()
filtered_dict = {}
for k, v in mnist_pretrained_dict.items():
if k in embeddingnet_dict:
#print('load ', k)
filtered_dict[k] = v
embeddingnet_dict.update(filtered_dict)
net.load_state_dict(embeddingnet_dict)
print('loaded from {}\nckpt epoch {} acc {:.2f}%'.format(args.pretrained,
ckpt['epoch'], ckpt['acc_inst']))
if args.freeze:
for name, value in net.named_parameters():
value.requires_grad = False
net.eval()
return net, agent
def feed_data(model, agent, data_loader, is_train, upload=True):
if is_train:
phase = 'Train'
agent.train()
else:
phase = 'Test'
agent.eval()
pol_losses, ent_losses, rewards = [], [], []
correct, count = 0, 0
len_dataloader = len(data_loader)
for batch_idx, (data, target) in enumerate(data_loader):
batch_size = data.shape[0]
data, target = data.to(device), target.float()
optimizer_ag.zero_grad()
'''split to support set and target set '''
num = batch_size % args.samples_per_class
if num != 0:
data, target = data[:-num], target[:-num]
batch_size = data.shape[0]
num_group = batch_size // args.samples_per_class
rnd_inds = np.random.permutation(num_group)
if num_group == 0:
continue
count += batch_size
'''initialize'''
rois_gt = torch.cat((torch.arange(0, batch_size).float().view(-1, 1),
target[:, :4]), dim=1).to(device)
actor = Actor(data.shape[2:], data.shape[0], min_box_side=args.min_box_side)
rewards_all = torch.zeros((batch_size, args.seq_len+1)).to(device)
action_seq = torch.IntTensor(batch_size, args.seq_len).to(device)
logits_seq, boxes = [], []
if args.hidden_size:
h_t = torch.zeros(
batch_size,
args.hidden_size,
dtype=torch.float,
device=device,
requires_grad=True,
)
# start from the whole image
pred_boxes = torch.tensor([[0, 0, args.img_size-1, args.img_size-1]]).float().repeat(batch_size, 1).to(device)
rois = torch.cat((torch.arange(0, batch_size).float().view(-1, 1).to(device),
pred_boxes), dim=1)
'''forward embedding net'''
with torch.no_grad():
embed_gt, top_feat_gt = model(data, rois_gt)
embed, top_feat = model.get_roi_embedding(rois)
'''compute reward of the first step '''
if 'proto' in args.train_mode:
proto = top_feat_gt.view(-1, args.samples_per_class, args.dim).mean(1) # (num_group, 512)
if args.train_mode == 'shuffle_proto':
proto = proto[rnd_inds]
proto = proto.unsqueeze(1).repeat(1, args.samples_per_class, 1).view(-1, args.dim)
rewards_all[:, 0] = F.pairwise_distance(proto, top_feat)
else:
if args.train_mode == 'shuffle_self':
top_feat_gt = top_feat_gt.view(-1, args.samples_per_class, args.dim)[rnd_inds].view(-1, args.dim)
rewards_all[:, 0] = F.pairwise_distance(top_feat_gt, top_feat)
'''forward agent'''
for t in range(args.seq_len):
if args.hidden_size:
h_t, logits, actions = agent(embed, h_t_prev=h_t)
else:
logits, actions = agent(embed)
pred_boxes = actor.take_action(actions)
rois = torch.cat((torch.arange(0, batch_size).float().view(-1, 1).to(device),
pred_boxes.to(device)), dim=1)
with torch.no_grad():
embed, top_feat = model.get_roi_embedding(rois)
if 'proto' in args.train_mode:
rewards_all[:, t + 1] = F.pairwise_distance(proto, top_feat)
else:
rewards_all[:, t + 1] = F.pairwise_distance(top_feat_gt, top_feat)
action_seq[:, t] = actions.view(1, -1)
logits_seq.append(logits)
boxes.append(pred_boxes)
'''incremental reward'''
rewards_deltas = -rewards_all[:, 1:] - (-rewards_all[:, :-1])
if args.sign:
rewards_deltas = torch.sign(rewards_deltas)
'''compute policy loss'''
coord = product(range(action_seq.size(0)), range(action_seq.size(1)))
coo_actions = [[k, m, action_seq[k, m]] for k, m in coord]
logits_seq = torch.stack(tuple(logits_seq), dim=0)
logits_seq = logits_seq.permute(1, 0, 2).to(device) # (bs, T, dim)
#TODO, deal with stop action, modify rewards
q, score, adv = get_policy_loss(rewards_deltas, gamma=args.gamma,
logits_seq=logits_seq, coo_actions=coo_actions)
'''compute entropy loss'''
m = Categorical(logits=logits_seq)
loss_ent = m.entropy() # (bs, T)
loss = (q - loss_ent * args.lamb_ent).sum()
if phase == 'Train':
loss.backward()
#torch.nn.utils.clip_grad_norm_(agent.parameters(), 10)
optimizer_ag.step()
'''calculate accuracy'''
iou = torch.diagonal(box_iou(pred_boxes.float(),
target[:, :4]), 0)
correct += (iou >= 0.5).sum()
pol_losses.append(q.sum().item())
ent_losses.append(loss_ent.sum().item())
rewards.append(torch.mean(rewards_deltas).item())
if batch_idx % args.log_interval == 0:
if batch_idx == 0:
print('\n')
print('{} Epoch: {} [{}/{} ({:.0f}%)]\tReward: {:.4f}'.format(
phase, epoch, batch_idx * batch_size,
len(data_loader.dataset),
100. * batch_idx / len_dataloader, np.mean(rewards)))
total_pol_loss = np.mean(pol_losses)
acc = 100. * correct / count
log_message = {"{} Pol Loss".format(phase): total_pol_loss,
'{} Rewards'.format(phase): np.mean(rewards),
'{} Loc Acc'.format(phase): acc,
'{} Ent Loss'.format(phase): np.mean(ent_losses)
}
if phase == 'Train':
current_lr = scheduler_ag.get_last_lr()[0]
log_message.update({'learning rate': current_lr})
if upload:
wandb.log(log_message, step=epoch)
return total_pol_loss, acc
def evaluate_acc(upload=True):
agent_path = os.path.join(saveroot, 'best.pth.tar')
'''load agent'''
print('loading net ckpt from ', agent_path)
ckpt = torch.load(agent_path)
state_dict = ckpt['state_dict']
epoch = ckpt['epoch']
best_acc = ckpt['acc']
agent.load_state_dict(state_dict)
print(("=> loaded agent checkpoint epoch {} {}".format(epoch, best_acc)))
if upload:
wandb.run.summary.update({'Test Best Loc Acc': best_acc})
if args.dataset == 'mnist':
kwargs = {'num_workers': 8, 'pin_memory': True}
test_transform = Compose([Resize(args.img_size)])
test_accs = []
with torch.no_grad():
for d in range(0, 10):
if d == args.digit:
continue
testset = MNIST_Corrupted(root='.', train=False, digit=d, bg_name=args.bg_name,
datapath='/research/cbim/vast/tl601/Dataset/Synthesis_mnist_github',
transform=test_transform
)
test_loader = torch.utils.data.DataLoader(
testset, batch_size=args.batch_size, shuffle=False, **kwargs)
test_loss, test_acc = feed_data(net, agent,
data_loader=test_loader, is_train=False,
upload=False)
test_accs.append(test_acc)
print(d, ' test_acc ', test_acc)
print('mean acc ', np.mean(test_accs))
if upload:
wandb.run.summary.update({'Test Gen Acc': np.mean(test_accs)})
if __name__ == '__main__':
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
os.environ['WANDB_NAME'] = args.savename
wandb.init(project="selfpaced")
saveroot = os.path.join('/research/cbim/vast/tl601/results/loc-agent/',
args.savename)
os.makedirs(saveroot, exist_ok=True)
'''set dataloader'''
if args.dataset == 'mnist':
transform = Compose([Resize(args.img_size)])
elif args.dataset == 'cub' or args.dataset == 'coco':
transform = t.Compose([
t.ConvertFromPIL(),
t.ToPercentCoords(),
t.Resize(args.img_size),
t.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
t.ToTensor() # no change to (0, 1)
])
train_loader, test_loader = init_dataloader()
''''''
net, agent = init_model()
wandb.watch(net, log_freq=10)
wandb.watch(agent, log_freq=10)
wandb.config.update(args)
if args.optimizer_ag == 'SGD':
optimizer_ag = torch.optim.SGD(agent.parameters(), lr=args.lr_ag, momentum=0.9)
elif args.optimizer_ag == 'Adam':
optimizer_ag = torch.optim.Adam(agent.parameters(), lr=args.lr_ag)
scheduler_ag = torch.optim.lr_scheduler.StepLR(optimizer_ag, step_size=args.steps_ag, gamma=0.1)
if args.evaluate == 1:
epoch=0
evaluate_acc(False)
exit()
best_acc = 0.
save_model = False
no_improve_epoch = 0
for epoch in range(args.epochs):
train_log = feed_data(net, agent, data_loader=train_loader, is_train=True)
scheduler_ag.step()
with torch.no_grad():
test_loss, test_acc = feed_data(net, agent, data_loader=test_loader, is_train=False)
# save model
if test_acc > best_acc:
save_model = True
best_acc = test_acc
no_improve_epoch = 0
else:
save_model = False
no_improve_epoch += 1
if save_model:
torch.save({
'epoch': epoch,
'state_dict': agent.state_dict(),
'acc': best_acc
}, os.path.join(saveroot, 'best.pth.tar'))
# break training
if no_improve_epoch > args.patience:
print('stop training...')
break
torch.save({
'epoch': epoch,
'state_dict': agent.state_dict(),
'acc': test_acc
}, os.path.join(saveroot, 'last.pth.tar'))
# evaluate gen acc
DEBUG = False
evaluate_acc()