-
Notifications
You must be signed in to change notification settings - Fork 5
/
main.py
209 lines (143 loc) · 7.62 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import os
import numpy as np
import random
import gym
from environment import RandomizedEnvironment
from agent import Agent
from replay_buffer import Episode, ReplayBuffer
EPISODES = 1000000
directory = "checkpoints"
experiment = "FetchReach-v1"
env = gym.make(experiment)
# Program hyperparameters
TESTING_INTERVAL = 50 # number of updates between two evaluation of the policy
TESTING_ROLLOUTS = 100 # number of rollouts performed to evaluate the current policy
# Algorithm hyperparameters
BATCH_SIZE = 32
BUFFER_SIZE = 100000
MAX_STEPS = 50 # WARNING: defined in multiple files...
GAMMA = 0.99
K = 0.8 # probability of replay with H.E.R.
# Initialize the agent, both the actor/critic (and target counterparts) networks
agent = Agent(experiment, BATCH_SIZE*MAX_STEPS)
# Initialize the environment sampler
randomized_environment = RandomizedEnvironment(experiment, [], [])
# Initialize the replay buffer
replay_buffer = ReplayBuffer(BUFFER_SIZE)
if not os.path.exists(directory):
os.makedirs(directory)
for ep in range(EPISODES):
# generate a rollout
# generate an environment
randomized_environment.sample_env()
env, env_params = randomized_environment.get_env()
# reset the environment
current_obs_dict = env.reset()
# read the current goal, and initialize the episode
goal = current_obs_dict['desired_goal']
episode = Episode(goal, env_params, MAX_STEPS)
# get the first observation and first fake "old-action"
# TODO: decide if this fake action should be zero or random
obs = current_obs_dict['observation']
achieved = current_obs_dict['achieved_goal']
last_action = env.action_space.sample()
reward = env.compute_reward(achieved, goal, 0)
episode.add_step(last_action, obs, reward, achieved)
done = False
# rollout the whole episode
while not done:
obs = current_obs_dict['observation']
history = episode.get_history()
noise = agent.action_noise()
action = agent.evaluate_actor(agent._actor.predict, obs, goal, history) + noise
new_obs_dict, step_reward, done, info = env.step(action[0])
new_obs = new_obs_dict['observation']
achieved = new_obs_dict['achieved_goal']
episode.add_step(action[0], new_obs, step_reward, achieved, terminal = done)
current_obs_dict = new_obs_dict
# store the episode in the replay buffer
replay_buffer.add(episode)
# replay the episode with HER with probability k
if random.random() < K:
new_goal = current_obs_dict['achieved_goal']
replay_episode = Episode(new_goal, env_params, MAX_STEPS)
for action, state, achieved_goal, done in zip(episode.get_actions(), episode.get_states(), episode.get_achieved_goals(), episode.get_terminal()):
# compute the new reward
step_reward = env.compute_reward(achieved_goal, new_goal, 0)
# add the fake transition
replay_episode.add_step(action, state, step_reward, achieved_goal, terminal = done)
replay_buffer.add(replay_episode)
# close the environment
randomized_environment.close_env()
# perform a batch update of the network if we can sample a big enough batch
# from the replay buffer
if replay_buffer.size() > BATCH_SIZE:
episodes = replay_buffer.sample_batch(BATCH_SIZE)
s_batch = np.zeros([BATCH_SIZE*MAX_STEPS, agent.get_dim_state()])
a_batch = np.zeros([BATCH_SIZE*MAX_STEPS, agent.get_dim_action()])
next_s_batch = np.zeros([BATCH_SIZE*MAX_STEPS, agent.get_dim_state()])
r_batch = np.zeros([BATCH_SIZE*MAX_STEPS])
env_batch = np.zeros([BATCH_SIZE*MAX_STEPS, agent.get_dim_env()])
goal_batch = np.zeros([BATCH_SIZE*MAX_STEPS, agent.get_dim_goal()])
history_batch = np.zeros([BATCH_SIZE*MAX_STEPS, MAX_STEPS, agent.get_dim_action()+agent.get_dim_state()])
t_batch = []
for i in range(BATCH_SIZE):
s_batch[i*MAX_STEPS:(i+1)*MAX_STEPS] = np.array(episodes[i].get_states())[:-1]
a_batch[i*MAX_STEPS:(i+1)*MAX_STEPS] = np.array(episodes[i].get_actions())[1:]
next_s_batch[i*MAX_STEPS:(i+1)*MAX_STEPS] = np.array(episodes[i].get_states())[1:]
r_batch[i*MAX_STEPS:(i+1)*MAX_STEPS] = np.array(episodes[i].get_rewards())[1:]
env_batch[i*MAX_STEPS:(i+1)*MAX_STEPS]=np.array(MAX_STEPS*[episodes[i].get_env()])
goal_batch[i*MAX_STEPS:(i+1)*MAX_STEPS]=np.array(MAX_STEPS*[episodes[i].get_goal()])
history_batch[i*MAX_STEPS:(i+1)*MAX_STEPS] = np.array([episodes[i].get_history(t = t) for t in range(1, MAX_STEPS+1)])
# WARNING FIXME: needs padding
t_batch += episodes[i].get_terminal()[1:]
target_action_batch = agent.evaluate_actor_batch(agent._actor.predict_target, next_s_batch, goal_batch, history_batch)
predicted_actions = agent.evaluate_actor_batch(agent._actor.predict, next_s_batch, goal_batch, history_batch)
target_q = agent.evaluate_critic_batch(agent._critic.predict_target, next_s_batch, predicted_actions, goal_batch, history_batch, env_batch)
y_i = []
for k in range(BATCH_SIZE*MAX_STEPS):
if t_batch[k]:
y_i.append(r_batch[k])
else:
y_i.append(r_batch[k] + GAMMA * target_q[k])
predicted_q_value, _ = agent.train_critic(s_batch, a_batch, goal_batch, history_batch, env_batch, np.reshape(y_i, (BATCH_SIZE*MAX_STEPS, 1)))
# Update the actor policy using the sampled gradient
a_outs = agent.evaluate_actor_batch(agent._actor.predict, s_batch, goal_batch, history_batch)
grads = agent.action_gradients_critic(s_batch, a_outs, goal_batch, history_batch, env_batch)
agent.train_actor(s_batch, goal_batch, history_batch, grads[0])
# Update target networks
agent.update_target_actor()
agent.update_target_critic()
# perform policy evaluation
if ep % TESTING_INTERVAL == 0:
success_number = 0
for test_ep in range(TESTING_ROLLOUTS):
randomized_environment.sample_env()
env, env_params = randomized_environment.get_env()
current_obs_dict = env.reset()
# read the current goal, and initialize the episode
goal = current_obs_dict['desired_goal']
episode = Episode(goal, env_params, MAX_STEPS)
# get the first observation and first fake "old-action"
# TODO: decide if this fake action should be zero or random
obs = current_obs_dict['observation']
achieved = current_obs_dict['achieved_goal']
last_action = env.action_space.sample()
episode.add_step(last_action, obs, 0, achieved)
done = False
# rollout the whole episode
while not done:
obs = current_obs_dict['observation']
history = episode.get_history()
action = agent.evaluate_actor(agent._actor.predict_target, obs, goal, history)
new_obs_dict, step_reward, done, info = env.step(action[0])
new_obs = new_obs_dict['observation']
achieved = new_obs_dict['achieved_goal']
episode.add_step(action[0], new_obs, step_reward, achieved, terminal=done)
current_obs_dict = new_obs_dict
if info['is_success'] > 0.0:
success_number += 1
randomized_environment.close_env()
print("Testing at episode {}, success rate : {}".format(ep, success_number/TESTING_ROLLOUTS))
agent.save_model("{}/ckpt_episode_{}".format(directory, ep))
agent.update_success(success_number/TESTING_ROLLOUTS, ep)