-
Notifications
You must be signed in to change notification settings - Fork 797
/
lfs.c
6462 lines (5527 loc) · 191 KB
/
lfs.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* The little filesystem
*
* Copyright (c) 2022, The littlefs authors.
* Copyright (c) 2017, Arm Limited. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "lfs.h"
#include "lfs_util.h"
// some constants used throughout the code
#define LFS_BLOCK_NULL ((lfs_block_t)-1)
#define LFS_BLOCK_INLINE ((lfs_block_t)-2)
enum {
LFS_OK_RELOCATED = 1,
LFS_OK_DROPPED = 2,
LFS_OK_ORPHANED = 3,
};
enum {
LFS_CMP_EQ = 0,
LFS_CMP_LT = 1,
LFS_CMP_GT = 2,
};
/// Caching block device operations ///
static inline void lfs_cache_drop(lfs_t *lfs, lfs_cache_t *rcache) {
// do not zero, cheaper if cache is readonly or only going to be
// written with identical data (during relocates)
(void)lfs;
rcache->block = LFS_BLOCK_NULL;
}
static inline void lfs_cache_zero(lfs_t *lfs, lfs_cache_t *pcache) {
// zero to avoid information leak
memset(pcache->buffer, 0xff, lfs->cfg->cache_size);
pcache->block = LFS_BLOCK_NULL;
}
static int lfs_bd_read(lfs_t *lfs,
const lfs_cache_t *pcache, lfs_cache_t *rcache, lfs_size_t hint,
lfs_block_t block, lfs_off_t off,
void *buffer, lfs_size_t size) {
uint8_t *data = buffer;
if (off+size > lfs->cfg->block_size
|| (lfs->block_count && block >= lfs->block_count)) {
return LFS_ERR_CORRUPT;
}
while (size > 0) {
lfs_size_t diff = size;
if (pcache && block == pcache->block &&
off < pcache->off + pcache->size) {
if (off >= pcache->off) {
// is already in pcache?
diff = lfs_min(diff, pcache->size - (off-pcache->off));
memcpy(data, &pcache->buffer[off-pcache->off], diff);
data += diff;
off += diff;
size -= diff;
continue;
}
// pcache takes priority
diff = lfs_min(diff, pcache->off-off);
}
if (block == rcache->block &&
off < rcache->off + rcache->size) {
if (off >= rcache->off) {
// is already in rcache?
diff = lfs_min(diff, rcache->size - (off-rcache->off));
memcpy(data, &rcache->buffer[off-rcache->off], diff);
data += diff;
off += diff;
size -= diff;
continue;
}
// rcache takes priority
diff = lfs_min(diff, rcache->off-off);
}
if (size >= hint && off % lfs->cfg->read_size == 0 &&
size >= lfs->cfg->read_size) {
// bypass cache?
diff = lfs_aligndown(diff, lfs->cfg->read_size);
int err = lfs->cfg->read(lfs->cfg, block, off, data, diff);
if (err) {
return err;
}
data += diff;
off += diff;
size -= diff;
continue;
}
// load to cache, first condition can no longer fail
LFS_ASSERT(!lfs->block_count || block < lfs->block_count);
rcache->block = block;
rcache->off = lfs_aligndown(off, lfs->cfg->read_size);
rcache->size = lfs_min(
lfs_min(
lfs_alignup(off+hint, lfs->cfg->read_size),
lfs->cfg->block_size)
- rcache->off,
lfs->cfg->cache_size);
int err = lfs->cfg->read(lfs->cfg, rcache->block,
rcache->off, rcache->buffer, rcache->size);
LFS_ASSERT(err <= 0);
if (err) {
return err;
}
}
return 0;
}
static int lfs_bd_cmp(lfs_t *lfs,
const lfs_cache_t *pcache, lfs_cache_t *rcache, lfs_size_t hint,
lfs_block_t block, lfs_off_t off,
const void *buffer, lfs_size_t size) {
const uint8_t *data = buffer;
lfs_size_t diff = 0;
for (lfs_off_t i = 0; i < size; i += diff) {
uint8_t dat[8];
diff = lfs_min(size-i, sizeof(dat));
int err = lfs_bd_read(lfs,
pcache, rcache, hint-i,
block, off+i, &dat, diff);
if (err) {
return err;
}
int res = memcmp(dat, data + i, diff);
if (res) {
return res < 0 ? LFS_CMP_LT : LFS_CMP_GT;
}
}
return LFS_CMP_EQ;
}
static int lfs_bd_crc(lfs_t *lfs,
const lfs_cache_t *pcache, lfs_cache_t *rcache, lfs_size_t hint,
lfs_block_t block, lfs_off_t off, lfs_size_t size, uint32_t *crc) {
lfs_size_t diff = 0;
for (lfs_off_t i = 0; i < size; i += diff) {
uint8_t dat[8];
diff = lfs_min(size-i, sizeof(dat));
int err = lfs_bd_read(lfs,
pcache, rcache, hint-i,
block, off+i, &dat, diff);
if (err) {
return err;
}
*crc = lfs_crc(*crc, &dat, diff);
}
return 0;
}
#ifndef LFS_READONLY
static int lfs_bd_flush(lfs_t *lfs,
lfs_cache_t *pcache, lfs_cache_t *rcache, bool validate) {
if (pcache->block != LFS_BLOCK_NULL && pcache->block != LFS_BLOCK_INLINE) {
LFS_ASSERT(pcache->block < lfs->block_count);
lfs_size_t diff = lfs_alignup(pcache->size, lfs->cfg->prog_size);
int err = lfs->cfg->prog(lfs->cfg, pcache->block,
pcache->off, pcache->buffer, diff);
LFS_ASSERT(err <= 0);
if (err) {
return err;
}
if (validate) {
// check data on disk
lfs_cache_drop(lfs, rcache);
int res = lfs_bd_cmp(lfs,
NULL, rcache, diff,
pcache->block, pcache->off, pcache->buffer, diff);
if (res < 0) {
return res;
}
if (res != LFS_CMP_EQ) {
return LFS_ERR_CORRUPT;
}
}
lfs_cache_zero(lfs, pcache);
}
return 0;
}
#endif
#ifndef LFS_READONLY
static int lfs_bd_sync(lfs_t *lfs,
lfs_cache_t *pcache, lfs_cache_t *rcache, bool validate) {
lfs_cache_drop(lfs, rcache);
int err = lfs_bd_flush(lfs, pcache, rcache, validate);
if (err) {
return err;
}
err = lfs->cfg->sync(lfs->cfg);
LFS_ASSERT(err <= 0);
return err;
}
#endif
#ifndef LFS_READONLY
static int lfs_bd_prog(lfs_t *lfs,
lfs_cache_t *pcache, lfs_cache_t *rcache, bool validate,
lfs_block_t block, lfs_off_t off,
const void *buffer, lfs_size_t size) {
const uint8_t *data = buffer;
LFS_ASSERT(block == LFS_BLOCK_INLINE || block < lfs->block_count);
LFS_ASSERT(off + size <= lfs->cfg->block_size);
while (size > 0) {
if (block == pcache->block &&
off >= pcache->off &&
off < pcache->off + lfs->cfg->cache_size) {
// already fits in pcache?
lfs_size_t diff = lfs_min(size,
lfs->cfg->cache_size - (off-pcache->off));
memcpy(&pcache->buffer[off-pcache->off], data, diff);
data += diff;
off += diff;
size -= diff;
pcache->size = lfs_max(pcache->size, off - pcache->off);
if (pcache->size == lfs->cfg->cache_size) {
// eagerly flush out pcache if we fill up
int err = lfs_bd_flush(lfs, pcache, rcache, validate);
if (err) {
return err;
}
}
continue;
}
// pcache must have been flushed, either by programming and
// entire block or manually flushing the pcache
LFS_ASSERT(pcache->block == LFS_BLOCK_NULL);
// prepare pcache, first condition can no longer fail
pcache->block = block;
pcache->off = lfs_aligndown(off, lfs->cfg->prog_size);
pcache->size = 0;
}
return 0;
}
#endif
#ifndef LFS_READONLY
static int lfs_bd_erase(lfs_t *lfs, lfs_block_t block) {
LFS_ASSERT(block < lfs->block_count);
int err = lfs->cfg->erase(lfs->cfg, block);
LFS_ASSERT(err <= 0);
return err;
}
#endif
/// Small type-level utilities ///
// operations on block pairs
static inline void lfs_pair_swap(lfs_block_t pair[2]) {
lfs_block_t t = pair[0];
pair[0] = pair[1];
pair[1] = t;
}
static inline bool lfs_pair_isnull(const lfs_block_t pair[2]) {
return pair[0] == LFS_BLOCK_NULL || pair[1] == LFS_BLOCK_NULL;
}
static inline int lfs_pair_cmp(
const lfs_block_t paira[2],
const lfs_block_t pairb[2]) {
return !(paira[0] == pairb[0] || paira[1] == pairb[1] ||
paira[0] == pairb[1] || paira[1] == pairb[0]);
}
static inline bool lfs_pair_issync(
const lfs_block_t paira[2],
const lfs_block_t pairb[2]) {
return (paira[0] == pairb[0] && paira[1] == pairb[1]) ||
(paira[0] == pairb[1] && paira[1] == pairb[0]);
}
static inline void lfs_pair_fromle32(lfs_block_t pair[2]) {
pair[0] = lfs_fromle32(pair[0]);
pair[1] = lfs_fromle32(pair[1]);
}
#ifndef LFS_READONLY
static inline void lfs_pair_tole32(lfs_block_t pair[2]) {
pair[0] = lfs_tole32(pair[0]);
pair[1] = lfs_tole32(pair[1]);
}
#endif
// operations on 32-bit entry tags
typedef uint32_t lfs_tag_t;
typedef int32_t lfs_stag_t;
#define LFS_MKTAG(type, id, size) \
(((lfs_tag_t)(type) << 20) | ((lfs_tag_t)(id) << 10) | (lfs_tag_t)(size))
#define LFS_MKTAG_IF(cond, type, id, size) \
((cond) ? LFS_MKTAG(type, id, size) : LFS_MKTAG(LFS_FROM_NOOP, 0, 0))
#define LFS_MKTAG_IF_ELSE(cond, type1, id1, size1, type2, id2, size2) \
((cond) ? LFS_MKTAG(type1, id1, size1) : LFS_MKTAG(type2, id2, size2))
static inline bool lfs_tag_isvalid(lfs_tag_t tag) {
return !(tag & 0x80000000);
}
static inline bool lfs_tag_isdelete(lfs_tag_t tag) {
return ((int32_t)(tag << 22) >> 22) == -1;
}
static inline uint16_t lfs_tag_type1(lfs_tag_t tag) {
return (tag & 0x70000000) >> 20;
}
static inline uint16_t lfs_tag_type2(lfs_tag_t tag) {
return (tag & 0x78000000) >> 20;
}
static inline uint16_t lfs_tag_type3(lfs_tag_t tag) {
return (tag & 0x7ff00000) >> 20;
}
static inline uint8_t lfs_tag_chunk(lfs_tag_t tag) {
return (tag & 0x0ff00000) >> 20;
}
static inline int8_t lfs_tag_splice(lfs_tag_t tag) {
return (int8_t)lfs_tag_chunk(tag);
}
static inline uint16_t lfs_tag_id(lfs_tag_t tag) {
return (tag & 0x000ffc00) >> 10;
}
static inline lfs_size_t lfs_tag_size(lfs_tag_t tag) {
return tag & 0x000003ff;
}
static inline lfs_size_t lfs_tag_dsize(lfs_tag_t tag) {
return sizeof(tag) + lfs_tag_size(tag + lfs_tag_isdelete(tag));
}
// operations on attributes in attribute lists
struct lfs_mattr {
lfs_tag_t tag;
const void *buffer;
};
struct lfs_diskoff {
lfs_block_t block;
lfs_off_t off;
};
#define LFS_MKATTRS(...) \
(struct lfs_mattr[]){__VA_ARGS__}, \
sizeof((struct lfs_mattr[]){__VA_ARGS__}) / sizeof(struct lfs_mattr)
// operations on global state
static inline void lfs_gstate_xor(lfs_gstate_t *a, const lfs_gstate_t *b) {
for (int i = 0; i < 3; i++) {
((uint32_t*)a)[i] ^= ((const uint32_t*)b)[i];
}
}
static inline bool lfs_gstate_iszero(const lfs_gstate_t *a) {
for (int i = 0; i < 3; i++) {
if (((uint32_t*)a)[i] != 0) {
return false;
}
}
return true;
}
#ifndef LFS_READONLY
static inline bool lfs_gstate_hasorphans(const lfs_gstate_t *a) {
return lfs_tag_size(a->tag);
}
static inline uint8_t lfs_gstate_getorphans(const lfs_gstate_t *a) {
return lfs_tag_size(a->tag) & 0x1ff;
}
static inline bool lfs_gstate_hasmove(const lfs_gstate_t *a) {
return lfs_tag_type1(a->tag);
}
#endif
static inline bool lfs_gstate_needssuperblock(const lfs_gstate_t *a) {
return lfs_tag_size(a->tag) >> 9;
}
static inline bool lfs_gstate_hasmovehere(const lfs_gstate_t *a,
const lfs_block_t *pair) {
return lfs_tag_type1(a->tag) && lfs_pair_cmp(a->pair, pair) == 0;
}
static inline void lfs_gstate_fromle32(lfs_gstate_t *a) {
a->tag = lfs_fromle32(a->tag);
a->pair[0] = lfs_fromle32(a->pair[0]);
a->pair[1] = lfs_fromle32(a->pair[1]);
}
#ifndef LFS_READONLY
static inline void lfs_gstate_tole32(lfs_gstate_t *a) {
a->tag = lfs_tole32(a->tag);
a->pair[0] = lfs_tole32(a->pair[0]);
a->pair[1] = lfs_tole32(a->pair[1]);
}
#endif
// operations on forward-CRCs used to track erased state
struct lfs_fcrc {
lfs_size_t size;
uint32_t crc;
};
static void lfs_fcrc_fromle32(struct lfs_fcrc *fcrc) {
fcrc->size = lfs_fromle32(fcrc->size);
fcrc->crc = lfs_fromle32(fcrc->crc);
}
#ifndef LFS_READONLY
static void lfs_fcrc_tole32(struct lfs_fcrc *fcrc) {
fcrc->size = lfs_tole32(fcrc->size);
fcrc->crc = lfs_tole32(fcrc->crc);
}
#endif
// other endianness operations
static void lfs_ctz_fromle32(struct lfs_ctz *ctz) {
ctz->head = lfs_fromle32(ctz->head);
ctz->size = lfs_fromle32(ctz->size);
}
#ifndef LFS_READONLY
static void lfs_ctz_tole32(struct lfs_ctz *ctz) {
ctz->head = lfs_tole32(ctz->head);
ctz->size = lfs_tole32(ctz->size);
}
#endif
static inline void lfs_superblock_fromle32(lfs_superblock_t *superblock) {
superblock->version = lfs_fromle32(superblock->version);
superblock->block_size = lfs_fromle32(superblock->block_size);
superblock->block_count = lfs_fromle32(superblock->block_count);
superblock->name_max = lfs_fromle32(superblock->name_max);
superblock->file_max = lfs_fromle32(superblock->file_max);
superblock->attr_max = lfs_fromle32(superblock->attr_max);
}
#ifndef LFS_READONLY
static inline void lfs_superblock_tole32(lfs_superblock_t *superblock) {
superblock->version = lfs_tole32(superblock->version);
superblock->block_size = lfs_tole32(superblock->block_size);
superblock->block_count = lfs_tole32(superblock->block_count);
superblock->name_max = lfs_tole32(superblock->name_max);
superblock->file_max = lfs_tole32(superblock->file_max);
superblock->attr_max = lfs_tole32(superblock->attr_max);
}
#endif
#ifndef LFS_NO_ASSERT
static bool lfs_mlist_isopen(struct lfs_mlist *head,
struct lfs_mlist *node) {
for (struct lfs_mlist **p = &head; *p; p = &(*p)->next) {
if (*p == (struct lfs_mlist*)node) {
return true;
}
}
return false;
}
#endif
static void lfs_mlist_remove(lfs_t *lfs, struct lfs_mlist *mlist) {
for (struct lfs_mlist **p = &lfs->mlist; *p; p = &(*p)->next) {
if (*p == mlist) {
*p = (*p)->next;
break;
}
}
}
static void lfs_mlist_append(lfs_t *lfs, struct lfs_mlist *mlist) {
mlist->next = lfs->mlist;
lfs->mlist = mlist;
}
// some other filesystem operations
static uint32_t lfs_fs_disk_version(lfs_t *lfs) {
(void)lfs;
#ifdef LFS_MULTIVERSION
if (lfs->cfg->disk_version) {
return lfs->cfg->disk_version;
} else
#endif
{
return LFS_DISK_VERSION;
}
}
static uint16_t lfs_fs_disk_version_major(lfs_t *lfs) {
return 0xffff & (lfs_fs_disk_version(lfs) >> 16);
}
static uint16_t lfs_fs_disk_version_minor(lfs_t *lfs) {
return 0xffff & (lfs_fs_disk_version(lfs) >> 0);
}
/// Internal operations predeclared here ///
#ifndef LFS_READONLY
static int lfs_dir_commit(lfs_t *lfs, lfs_mdir_t *dir,
const struct lfs_mattr *attrs, int attrcount);
static int lfs_dir_compact(lfs_t *lfs,
lfs_mdir_t *dir, const struct lfs_mattr *attrs, int attrcount,
lfs_mdir_t *source, uint16_t begin, uint16_t end);
static lfs_ssize_t lfs_file_flushedwrite(lfs_t *lfs, lfs_file_t *file,
const void *buffer, lfs_size_t size);
static lfs_ssize_t lfs_file_write_(lfs_t *lfs, lfs_file_t *file,
const void *buffer, lfs_size_t size);
static int lfs_file_sync_(lfs_t *lfs, lfs_file_t *file);
static int lfs_file_outline(lfs_t *lfs, lfs_file_t *file);
static int lfs_file_flush(lfs_t *lfs, lfs_file_t *file);
static int lfs_fs_deorphan(lfs_t *lfs, bool powerloss);
static int lfs_fs_preporphans(lfs_t *lfs, int8_t orphans);
static void lfs_fs_prepmove(lfs_t *lfs,
uint16_t id, const lfs_block_t pair[2]);
static int lfs_fs_pred(lfs_t *lfs, const lfs_block_t dir[2],
lfs_mdir_t *pdir);
static lfs_stag_t lfs_fs_parent(lfs_t *lfs, const lfs_block_t dir[2],
lfs_mdir_t *parent);
static int lfs_fs_forceconsistency(lfs_t *lfs);
#endif
static void lfs_fs_prepsuperblock(lfs_t *lfs, bool needssuperblock);
#ifdef LFS_MIGRATE
static int lfs1_traverse(lfs_t *lfs,
int (*cb)(void*, lfs_block_t), void *data);
#endif
static int lfs_dir_rewind_(lfs_t *lfs, lfs_dir_t *dir);
static lfs_ssize_t lfs_file_flushedread(lfs_t *lfs, lfs_file_t *file,
void *buffer, lfs_size_t size);
static lfs_ssize_t lfs_file_read_(lfs_t *lfs, lfs_file_t *file,
void *buffer, lfs_size_t size);
static int lfs_file_close_(lfs_t *lfs, lfs_file_t *file);
static lfs_soff_t lfs_file_size_(lfs_t *lfs, lfs_file_t *file);
static lfs_ssize_t lfs_fs_size_(lfs_t *lfs);
static int lfs_fs_traverse_(lfs_t *lfs,
int (*cb)(void *data, lfs_block_t block), void *data,
bool includeorphans);
static int lfs_deinit(lfs_t *lfs);
static int lfs_unmount_(lfs_t *lfs);
/// Block allocator ///
// allocations should call this when all allocated blocks are committed to
// the filesystem
//
// after a checkpoint, the block allocator may realloc any untracked blocks
static void lfs_alloc_ckpoint(lfs_t *lfs) {
lfs->lookahead.ckpoint = lfs->block_count;
}
// drop the lookahead buffer, this is done during mounting and failed
// traversals in order to avoid invalid lookahead state
static void lfs_alloc_drop(lfs_t *lfs) {
lfs->lookahead.size = 0;
lfs->lookahead.next = 0;
lfs_alloc_ckpoint(lfs);
}
#ifndef LFS_READONLY
static int lfs_alloc_lookahead(void *p, lfs_block_t block) {
lfs_t *lfs = (lfs_t*)p;
lfs_block_t off = ((block - lfs->lookahead.start)
+ lfs->block_count) % lfs->block_count;
if (off < lfs->lookahead.size) {
lfs->lookahead.buffer[off / 8] |= 1U << (off % 8);
}
return 0;
}
#endif
#ifndef LFS_READONLY
static int lfs_alloc_scan(lfs_t *lfs) {
// move lookahead buffer to the first unused block
//
// note we limit the lookahead buffer to at most the amount of blocks
// checkpointed, this prevents the math in lfs_alloc from underflowing
lfs->lookahead.start = (lfs->lookahead.start + lfs->lookahead.next)
% lfs->block_count;
lfs->lookahead.next = 0;
lfs->lookahead.size = lfs_min(
8*lfs->cfg->lookahead_size,
lfs->lookahead.ckpoint);
// find mask of free blocks from tree
memset(lfs->lookahead.buffer, 0, lfs->cfg->lookahead_size);
int err = lfs_fs_traverse_(lfs, lfs_alloc_lookahead, lfs, true);
if (err) {
lfs_alloc_drop(lfs);
return err;
}
return 0;
}
#endif
#ifndef LFS_READONLY
static int lfs_alloc(lfs_t *lfs, lfs_block_t *block) {
while (true) {
// scan our lookahead buffer for free blocks
while (lfs->lookahead.next < lfs->lookahead.size) {
if (!(lfs->lookahead.buffer[lfs->lookahead.next / 8]
& (1U << (lfs->lookahead.next % 8)))) {
// found a free block
*block = (lfs->lookahead.start + lfs->lookahead.next)
% lfs->block_count;
// eagerly find next free block to maximize how many blocks
// lfs_alloc_ckpoint makes available for scanning
while (true) {
lfs->lookahead.next += 1;
lfs->lookahead.ckpoint -= 1;
if (lfs->lookahead.next >= lfs->lookahead.size
|| !(lfs->lookahead.buffer[lfs->lookahead.next / 8]
& (1U << (lfs->lookahead.next % 8)))) {
return 0;
}
}
}
lfs->lookahead.next += 1;
lfs->lookahead.ckpoint -= 1;
}
// In order to keep our block allocator from spinning forever when our
// filesystem is full, we mark points where there are no in-flight
// allocations with a checkpoint before starting a set of allocations.
//
// If we've looked at all blocks since the last checkpoint, we report
// the filesystem as out of storage.
//
if (lfs->lookahead.ckpoint <= 0) {
LFS_ERROR("No more free space 0x%"PRIx32,
(lfs->lookahead.start + lfs->lookahead.next)
% lfs->block_count);
return LFS_ERR_NOSPC;
}
// No blocks in our lookahead buffer, we need to scan the filesystem for
// unused blocks in the next lookahead window.
int err = lfs_alloc_scan(lfs);
if(err) {
return err;
}
}
}
#endif
/// Metadata pair and directory operations ///
static lfs_stag_t lfs_dir_getslice(lfs_t *lfs, const lfs_mdir_t *dir,
lfs_tag_t gmask, lfs_tag_t gtag,
lfs_off_t goff, void *gbuffer, lfs_size_t gsize) {
lfs_off_t off = dir->off;
lfs_tag_t ntag = dir->etag;
lfs_stag_t gdiff = 0;
// synthetic moves
if (lfs_gstate_hasmovehere(&lfs->gdisk, dir->pair) &&
lfs_tag_id(gmask) != 0) {
if (lfs_tag_id(lfs->gdisk.tag) == lfs_tag_id(gtag)) {
return LFS_ERR_NOENT;
} else if (lfs_tag_id(lfs->gdisk.tag) < lfs_tag_id(gtag)) {
gdiff -= LFS_MKTAG(0, 1, 0);
}
}
// iterate over dir block backwards (for faster lookups)
while (off >= sizeof(lfs_tag_t) + lfs_tag_dsize(ntag)) {
off -= lfs_tag_dsize(ntag);
lfs_tag_t tag = ntag;
int err = lfs_bd_read(lfs,
NULL, &lfs->rcache, sizeof(ntag),
dir->pair[0], off, &ntag, sizeof(ntag));
if (err) {
return err;
}
ntag = (lfs_frombe32(ntag) ^ tag) & 0x7fffffff;
if (lfs_tag_id(gmask) != 0 &&
lfs_tag_type1(tag) == LFS_TYPE_SPLICE &&
lfs_tag_id(tag) <= lfs_tag_id(gtag - gdiff)) {
if (tag == (LFS_MKTAG(LFS_TYPE_CREATE, 0, 0) |
(LFS_MKTAG(0, 0x3ff, 0) & (gtag - gdiff)))) {
// found where we were created
return LFS_ERR_NOENT;
}
// move around splices
gdiff += LFS_MKTAG(0, lfs_tag_splice(tag), 0);
}
if ((gmask & tag) == (gmask & (gtag - gdiff))) {
if (lfs_tag_isdelete(tag)) {
return LFS_ERR_NOENT;
}
lfs_size_t diff = lfs_min(lfs_tag_size(tag), gsize);
err = lfs_bd_read(lfs,
NULL, &lfs->rcache, diff,
dir->pair[0], off+sizeof(tag)+goff, gbuffer, diff);
if (err) {
return err;
}
memset((uint8_t*)gbuffer + diff, 0, gsize - diff);
return tag + gdiff;
}
}
return LFS_ERR_NOENT;
}
static lfs_stag_t lfs_dir_get(lfs_t *lfs, const lfs_mdir_t *dir,
lfs_tag_t gmask, lfs_tag_t gtag, void *buffer) {
return lfs_dir_getslice(lfs, dir,
gmask, gtag,
0, buffer, lfs_tag_size(gtag));
}
static int lfs_dir_getread(lfs_t *lfs, const lfs_mdir_t *dir,
const lfs_cache_t *pcache, lfs_cache_t *rcache, lfs_size_t hint,
lfs_tag_t gmask, lfs_tag_t gtag,
lfs_off_t off, void *buffer, lfs_size_t size) {
uint8_t *data = buffer;
if (off+size > lfs->cfg->block_size) {
return LFS_ERR_CORRUPT;
}
while (size > 0) {
lfs_size_t diff = size;
if (pcache && pcache->block == LFS_BLOCK_INLINE &&
off < pcache->off + pcache->size) {
if (off >= pcache->off) {
// is already in pcache?
diff = lfs_min(diff, pcache->size - (off-pcache->off));
memcpy(data, &pcache->buffer[off-pcache->off], diff);
data += diff;
off += diff;
size -= diff;
continue;
}
// pcache takes priority
diff = lfs_min(diff, pcache->off-off);
}
if (rcache->block == LFS_BLOCK_INLINE &&
off < rcache->off + rcache->size) {
if (off >= rcache->off) {
// is already in rcache?
diff = lfs_min(diff, rcache->size - (off-rcache->off));
memcpy(data, &rcache->buffer[off-rcache->off], diff);
data += diff;
off += diff;
size -= diff;
continue;
}
// rcache takes priority
diff = lfs_min(diff, rcache->off-off);
}
// load to cache, first condition can no longer fail
rcache->block = LFS_BLOCK_INLINE;
rcache->off = lfs_aligndown(off, lfs->cfg->read_size);
rcache->size = lfs_min(lfs_alignup(off+hint, lfs->cfg->read_size),
lfs->cfg->cache_size);
int err = lfs_dir_getslice(lfs, dir, gmask, gtag,
rcache->off, rcache->buffer, rcache->size);
if (err < 0) {
return err;
}
}
return 0;
}
#ifndef LFS_READONLY
static int lfs_dir_traverse_filter(void *p,
lfs_tag_t tag, const void *buffer) {
lfs_tag_t *filtertag = p;
(void)buffer;
// which mask depends on unique bit in tag structure
uint32_t mask = (tag & LFS_MKTAG(0x100, 0, 0))
? LFS_MKTAG(0x7ff, 0x3ff, 0)
: LFS_MKTAG(0x700, 0x3ff, 0);
// check for redundancy
if ((mask & tag) == (mask & *filtertag) ||
lfs_tag_isdelete(*filtertag) ||
(LFS_MKTAG(0x7ff, 0x3ff, 0) & tag) == (
LFS_MKTAG(LFS_TYPE_DELETE, 0, 0) |
(LFS_MKTAG(0, 0x3ff, 0) & *filtertag))) {
*filtertag = LFS_MKTAG(LFS_FROM_NOOP, 0, 0);
return true;
}
// check if we need to adjust for created/deleted tags
if (lfs_tag_type1(tag) == LFS_TYPE_SPLICE &&
lfs_tag_id(tag) <= lfs_tag_id(*filtertag)) {
*filtertag += LFS_MKTAG(0, lfs_tag_splice(tag), 0);
}
return false;
}
#endif
#ifndef LFS_READONLY
// maximum recursive depth of lfs_dir_traverse, the deepest call:
//
// traverse with commit
// '-> traverse with move
// '-> traverse with filter
//
#define LFS_DIR_TRAVERSE_DEPTH 3
struct lfs_dir_traverse {
const lfs_mdir_t *dir;
lfs_off_t off;
lfs_tag_t ptag;
const struct lfs_mattr *attrs;
int attrcount;
lfs_tag_t tmask;
lfs_tag_t ttag;
uint16_t begin;
uint16_t end;
int16_t diff;
int (*cb)(void *data, lfs_tag_t tag, const void *buffer);
void *data;
lfs_tag_t tag;
const void *buffer;
struct lfs_diskoff disk;
};
static int lfs_dir_traverse(lfs_t *lfs,
const lfs_mdir_t *dir, lfs_off_t off, lfs_tag_t ptag,
const struct lfs_mattr *attrs, int attrcount,
lfs_tag_t tmask, lfs_tag_t ttag,
uint16_t begin, uint16_t end, int16_t diff,
int (*cb)(void *data, lfs_tag_t tag, const void *buffer), void *data) {
// This function in inherently recursive, but bounded. To allow tool-based
// analysis without unnecessary code-cost we use an explicit stack
struct lfs_dir_traverse stack[LFS_DIR_TRAVERSE_DEPTH-1];
unsigned sp = 0;
int res;
// iterate over directory and attrs
lfs_tag_t tag;
const void *buffer;
struct lfs_diskoff disk = {0};
while (true) {
{
if (off+lfs_tag_dsize(ptag) < dir->off) {
off += lfs_tag_dsize(ptag);
int err = lfs_bd_read(lfs,
NULL, &lfs->rcache, sizeof(tag),
dir->pair[0], off, &tag, sizeof(tag));
if (err) {
return err;
}
tag = (lfs_frombe32(tag) ^ ptag) | 0x80000000;
disk.block = dir->pair[0];
disk.off = off+sizeof(lfs_tag_t);
buffer = &disk;
ptag = tag;
} else if (attrcount > 0) {
tag = attrs[0].tag;
buffer = attrs[0].buffer;
attrs += 1;
attrcount -= 1;
} else {
// finished traversal, pop from stack?
res = 0;
break;
}
// do we need to filter?
lfs_tag_t mask = LFS_MKTAG(0x7ff, 0, 0);
if ((mask & tmask & tag) != (mask & tmask & ttag)) {
continue;
}
if (lfs_tag_id(tmask) != 0) {
LFS_ASSERT(sp < LFS_DIR_TRAVERSE_DEPTH);
// recurse, scan for duplicates, and update tag based on
// creates/deletes
stack[sp] = (struct lfs_dir_traverse){
.dir = dir,
.off = off,
.ptag = ptag,
.attrs = attrs,
.attrcount = attrcount,
.tmask = tmask,
.ttag = ttag,
.begin = begin,
.end = end,
.diff = diff,
.cb = cb,
.data = data,
.tag = tag,
.buffer = buffer,
.disk = disk,
};
sp += 1;
tmask = 0;
ttag = 0;
begin = 0;
end = 0;
diff = 0;
cb = lfs_dir_traverse_filter;
data = &stack[sp-1].tag;
continue;
}
}
popped:
// in filter range?
if (lfs_tag_id(tmask) != 0 &&
!(lfs_tag_id(tag) >= begin && lfs_tag_id(tag) < end)) {
continue;
}
// handle special cases for mcu-side operations
if (lfs_tag_type3(tag) == LFS_FROM_NOOP) {
// do nothing
} else if (lfs_tag_type3(tag) == LFS_FROM_MOVE) {
// Without this condition, lfs_dir_traverse can exhibit an
// extremely expensive O(n^3) of nested loops when renaming.
// This happens because lfs_dir_traverse tries to filter tags by
// the tags in the source directory, triggering a second
// lfs_dir_traverse with its own filter operation.
//
// traverse with commit