-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
45 lines (41 loc) · 1.25 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from numpy import index_exp
import torch
import utility
import data
import model
import loss
from option import args
if args.APE:
from trainer_ape import Trainer
else:
from trainer import Trainer
import os
# if torch.cuda.is_available():
os.environ["CUDA_VISIBLE_DEVICES"] = args.device
torch.manual_seed(args.seed)
checkpoint = utility.checkpoint(args)
def main():
global model
if args.data_test == ['video']:
from videotester import VideoTester
model = model.Model(args, checkpoint)
t = VideoTester(args, model, checkpoint)
t.test()
else:
if checkpoint.ok:
if args.switchable:
loader = []
for part in args.data_part_list:
args.file_suffix = part
loader.append(data.Data(args))
else:
loader = data.Data(args)
_model = model.Model(args, checkpoint)
_loss = loss.Loss(args, checkpoint) if not args.test_only else None
t = Trainer(args, loader, _model, _loss, checkpoint)
while not t.terminate():
t.train()
t.test()
checkpoint.done()
if __name__ == '__main__':
main()