-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutility.py
521 lines (437 loc) · 19 KB
/
utility.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
import os
import math
import time
import datetime
from multiprocessing import Process
from multiprocessing import Queue
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import imageio
import pickle
import cv2
import torch
import torch.optim as optim
import torch.optim.lr_scheduler as lrs
class timer():
def __init__(self):
self.acc = 0
self.times = 0
self.tic()
def tic(self):
self.t0 = time.time()
def toc(self, restart=False):
diff = time.time() - self.t0
if restart: self.t0 = time.time()
return diff
def hold(self):
''' accumulate (toc-tic) and hold times'''
self.acc += self.toc()
self.times += 1
def release(self, avg=False, reset=True):
''' return all accumulated (toc-tic) in sum/avg mode, then reset'''
ret = self.acc / self.count() if avg else self.acc
if reset: self.reset()
return ret
def count(self):
return self.times
def reset(self):
self.acc = 0
self.times = 0
class checkpoint():
def __init__(self, args):
self.args = args
self.ok = True
self.log = torch.Tensor()
now = datetime.datetime.now().strftime('%Y-%m-%d-%H:%M:%S')
if not args.load:
if not args.save:
args.save = now
self.dir = os.path.join('..', 'experiment', args.save)
else:
self.dir = os.path.join('..', 'experiment', args.load)
if os.path.exists(self.dir):
self.log = torch.load(self.get_path('psnr_log.pt'))
print('Continue from epoch {}...'.format(len(self.log)))
else:
args.load = ''
if args.reset:
os.system('rm -rf ' + self.dir)
args.load = ''
os.makedirs(self.dir, exist_ok=True)
os.makedirs(self.get_path('model'), exist_ok=True)
for d in args.data_test:
os.makedirs(self.get_path('results-{}'.format(d)), exist_ok=True)
open_type = 'a' if os.path.exists(self.get_path('log.txt'))else 'w'
self.log_file = open(self.get_path('log.txt'), open_type)
with open(self.get_path('config.txt'), open_type) as f:
f.write(now + '\n\n')
for arg in vars(args):
f.write('{}: {}\n'.format(arg, getattr(args, arg)))
f.write('\n')
self.n_processes = 8
def get_path(self, *subdir):
return os.path.join(self.dir, *subdir)
def save(self, trainer, epoch, is_best=False):
trainer.model.save(self.get_path('model'), epoch, is_best=is_best)
trainer.loss.save(self.dir)
trainer.loss.plot_loss(self.dir, epoch)
self.plot_psnr(epoch)
trainer.optimizer.save(self.dir)
torch.save(self.log, self.get_path('psnr_log.pt'))
def save_exit_list(self, exit_list):
with open(self.get_path('exit_list.pt'), 'wb') as _f:
pickle.dump(exit_list, _f)
def add_log(self, log):
self.log = torch.cat([self.log, log])
def write_log(self, log, refresh=True, print_time=True):
if print_time:
current_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
log = '[' + current_time + '] ' + log
print(log)
self.log_file.write(log + '\n')
if refresh:
self.log_file.close()
self.log_file = open(self.get_path('log.txt'), 'a')
def done(self):
self.log_file.close()
def plot_psnr(self, epoch):
axis = np.linspace(1, epoch, epoch)
for idx_data, d in enumerate(self.args.data_test):
label = 'SR on {}'.format(d)
fig = plt.figure()
plt.title(label)
for idx_scale, scale in enumerate(self.args.scale):
plt.plot(
axis,
self.log[:, idx_data, idx_scale].numpy(),
label='Scale {}'.format(scale)
)
plt.legend()
plt.xlabel('Epochs')
plt.ylabel('PSNR')
plt.grid(True)
plt.savefig(self.get_path('test_{}.pdf'.format(d)))
plt.close(fig)
def begin_background(self):
self.queue = Queue()
def bg_target(queue):
while True:
if not queue.empty():
filename, tensor = queue.get()
if filename is None: break
imageio.imwrite(filename, tensor.numpy())
self.process = [
Process(target=bg_target, args=(self.queue,)) \
for _ in range(self.n_processes)
]
for p in self.process: p.start()
def end_background(self):
for _ in range(self.n_processes): self.queue.put((None, None))
while not self.queue.empty(): time.sleep(1)
for p in self.process: p.join()
def save_results(self, dataset, filename, save_list, scale):
if self.args.save_results:
filename = self.get_path(
'results-{}'.format(dataset.dataset.name),
'{}_x{}_'.format(filename, scale)
)
postfix = ('SR', 'LR', 'HR')
for v, p in zip(save_list, postfix):
normalized = v[0].mul(255 / self.args.rgb_range)
tensor_cpu = normalized.byte().permute(1, 2, 0).cpu()
self.queue.put(('{}{}.png'.format(filename, p), tensor_cpu))
def save_results_dynamic(self, dataset, filename, save_dict, scale):
if self.args.save_results:
filename = self.get_path(
'results-{}'.format(self.args.data_test[0]),
'{}_x{}_'.format(filename, scale)
)
# postfix = ('SR', 'LR', 'HR')
# for v, p in zip(save_list, postfix):
for key, value in save_dict.items():
normalized = value[0].mul(255 / self.args.rgb_range)
tensor_cpu = normalized.byte().permute(1, 2, 0).cpu()
self.queue.put(('{}{}.png'.format(filename, key), tensor_cpu))
def quantize(img, rgb_range):
pixel_range = 255 / rgb_range
return img.mul(pixel_range).clamp(0, 255).round().div(pixel_range)
def calc_psnr(sr, hr, scale, rgb_range, dataset=None):
'''
automatically recognize dims
[C,H,W] -> 1
[B,C,H,W] -> [B]
'''
if hr.nelement() == 1: return 0
diff = (sr - hr) / rgb_range
if dataset and dataset.dataset.benchmark:
shave = scale
if diff.size(1) > 1:
gray_coeffs = [65.738, 129.057, 25.064]
convert = diff.new_tensor(gray_coeffs).view(1, 3, 1, 1) / 256
diff = diff.mul(convert).sum(dim=1)
else:
shave = scale + 6
valid = diff[..., shave:-shave, shave:-shave]
mse = valid.pow(2).mean((-1,-2,-3)).squeeze()
# mse = diff.pow(2).mean()
# if mse <= 0:
# print(mse)
# print(sr)
# print(hr)
# raise ValueError
# psnr = -10 * math.log10(mse)
psnr = -10 * torch.log10(mse)
return psnr
def make_optimizer(args, target):
'''
make optimizer and scheduler together
'''
# optimizer
trainable = filter(lambda x: x.requires_grad, target.parameters())
kwargs_optimizer = {'lr': args.lr, 'weight_decay': args.weight_decay}
if args.optimizer == 'SGD':
optimizer_class = optim.SGD
kwargs_optimizer['momentum'] = args.momentum
elif args.optimizer == 'ADAM':
optimizer_class = optim.Adam
kwargs_optimizer['betas'] = args.betas
kwargs_optimizer['eps'] = args.epsilon
elif args.optimizer == 'RMSprop':
optimizer_class = optim.RMSprop
kwargs_optimizer['eps'] = args.epsilon
# scheduler
milestones = list(map(lambda x: int(x), args.decay.split('-')))
if len(milestones) == 1:
kwargs_scheduler = {'step_size': milestones[0], 'gamma': args.gamma}
scheduler_class = lrs.StepLR
else:
kwargs_scheduler = {'milestones': milestones, 'gamma': args.gamma}
scheduler_class = lrs.MultiStepLR
class CustomOptimizer(optimizer_class):
def __init__(self, *args, **kwargs):
super(CustomOptimizer, self).__init__(*args, **kwargs)
def _register_scheduler(self, scheduler_class, **kwargs):
self.scheduler = scheduler_class(self, **kwargs)
def save(self, save_dir):
torch.save(self.state_dict(), self.get_dir(save_dir))
def load(self, load_dir, epoch=1):
self.load_state_dict(torch.load(self.get_dir(load_dir)))
if epoch > 1:
for _ in range(epoch): self.scheduler.step()
def get_dir(self, dir_path):
return os.path.join(dir_path, 'optimizer.pt')
def schedule(self):
self.scheduler.step()
def get_lr(self):
return self.scheduler.get_lr()[0]
def get_last_epoch(self):
return self.scheduler.last_epoch
optimizer = CustomOptimizer(trainable, **kwargs_optimizer)
optimizer._register_scheduler(scheduler_class, **kwargs_scheduler)
return optimizer
def crop(img, crop_sz, step):
b, c, h, w = img.shape
h_space = np.arange(0, h - crop_sz + 1, step)
w_space = np.arange(0, w - crop_sz + 1, step)
index = 0
num_h = 0
lr_list=[]
for x in h_space:
num_h += 1
num_w = 0
for y in w_space:
num_w += 1
index += 1
crop_img = img[:, :, x:x + crop_sz, y:y + crop_sz]
lr_list.append(crop_img)
new_h=x + crop_sz # new height after crop
new_w=y + crop_sz # new width after crop
return lr_list, num_h, num_w, new_h, new_w
def combine(sr_list, num_h, num_w, h, w, patch_size, step):
index=0
sr_img = torch.zeros((1, 3, h, w)).to(sr_list[0].device)
for i in range(num_h):
for j in range(num_w):
sr_img[:, :, i*step:i*step+patch_size, j*step:j*step+patch_size] += sr_list[index]
index+=1
# mean the overlap region
for j in range(1,num_w):
sr_img[:, :, :, j*step:j*step+(patch_size-step)]/=2
for i in range(1,num_h):
sr_img[:, :, i*step:i*step+(patch_size-step), :]/=2
return sr_img
def seamless_combine(sr_list, num_h, num_w, h, w, patch_size, step):
index=0
sr_img = torch.zeros((1, 3, h, w)).to(sr_list[0].device)
border = [1,1,1,1]
for i in range(num_h):
if i == 0: # top side
border[1] = 0
border[3] = 1
elif i < num_h-1: # middle
border[1] = 1
border[3] = 1
else: # bottom side
border[1] = 1
border[3] = 0
for j in range(num_w):
if j == 0: # left side
border[0] = 0
border[2] = 1
elif j < num_w-1: # middle
border[0] = 1
border[2] = 1
else: # right side
border[0] = 1
border[2] = 0
sr_img[:, :, i*step:i*step+patch_size, j*step:j*step+patch_size] += fade_border(sr_list[index], patch_size-step, border)
index+=1
return sr_img
def fade_border(img, border_size, border=[1,1,1,1]):
'''
gradually fade the border while maintain the center,
"border" indicates fading at [left, top, right, bottom]
'''
if border_size > 0: # overlap
if border[0] != 0: # left border
img[:, :, :border_size] *= torch.linspace(0, 1, border_size).unsqueeze(0).unsqueeze(0)
if border[1] != 0: # top border
img[:, :border_size, :] *= torch.linspace(0, 1, border_size).unsqueeze(0).transpose(1,0).unsqueeze(0)
if border[2] != 0: # right border
img[:, :, -border_size:] *= torch.linspace(1, 0, border_size).unsqueeze(0).unsqueeze(0)
if border[3] != 0: # bottom border
img[:, -border_size:,:] *= torch.linspace(1, 0, border_size).unsqueeze(0).transpose(1,0).unsqueeze(0)
return img
else: # non-overlap
return img
def crop_parallel(img, crop_sz, step):
b, c, h, w = img.shape
h_space = np.arange(0, h - crop_sz + 1, step)
w_space = np.arange(0, w - crop_sz + 1, step)
index = 0
num_h = 0
lr_list=torch.Tensor().to(img.device)
for x in h_space:
num_h += 1
num_w = 0
for y in w_space:
num_w += 1
index += 1
crop_img = img[:, :, x:x + crop_sz, y:y + crop_sz]
lr_list = torch.cat([lr_list, crop_img])
new_h=x + crop_sz # new height after crop
new_w=y + crop_sz # new width after crop
return lr_list, num_h, num_w, new_h, new_w
def combine_parallel(sr_list, num_h, num_w, h, w, patch_size, step):
index=0
sr_img = torch.zeros((1, 3, h, w)).to(sr_list.device)
for i in range(num_h):
for j in range(num_w):
sr_img[:, :, i*step:i*step+patch_size, j*step:j*step+patch_size] += sr_list[index]
index+=1
# mean the overlap region
for j in range(1,num_w):
sr_img[:, :, :, j*step:j*step+(patch_size-step)]/=2
for i in range(1,num_h):
sr_img[:, :, i*step:i*step+(patch_size-step), :]/=2
return sr_img
def add_mask(sr_img, scale, num_h, num_w, h, w, patch_size, step, exit_index, show_number=True):
# white and 7-rainbow
# color_list = [(255,255,255),(255,0,0),(255,165,0),(255,255,0),(0,255,0),(0,127,255),(0,0,255),(139,0,255)]
color_list = [(255,255,255),(255,225,0),(255,165,0),(240,0,0),(0,255,0),(0,127,255),(0,0,255),(139,0,255)]
idx = 0
sr_img = sr_img.squeeze().permute(1,2,0).numpy() # (H,W,C)
mask = np.zeros((sr_img.shape), 'float32')
for i in range(num_h):
for j in range(num_w):
bbox = [j * step + 2*scale,
i * step + 2*scale,
j * step + patch_size - (2*scale+1),
i * step + patch_size - (2*scale+1)] # xl,yl,xr,yr
color = color_list[int(exit_index[idx])]
cv2.rectangle(mask, (bbox[0]+1, bbox[1]+1), (bbox[2]-1, bbox[3]-1), color=color, thickness=-1)
cv2.putText(mask, '{}'.format(int(exit_index[idx]+1)),
(bbox[0]+4*scale, bbox[3]-4*scale), cv2.FONT_HERSHEY_SIMPLEX, scale, (255, 255, 255), 2)
idx += 1
# add_mask
alpha = 0.7
beta = 1 - alpha
gamma = 0
sr_mask = cv2.addWeighted(sr_img, alpha, mask, beta, gamma)
sr_mask = torch.from_numpy(sr_mask).permute(2,0,1).unsqueeze(0)
return sr_mask
def calc_avg_exit(exit_list):
if exit_list.ndim == 2:
exit_list = exit_list.sum(0)
num = exit_list.sum()
index = torch.arange(0,len(exit_list),1).float()
avg = (index*exit_list).sum() / num
return avg
def calc_flops(exit_list, model_name, scale, exit_interval):
if exit_list.ndim == 2:
exit_list = exit_list.sum(0)
if model_name.find("EDSR") >= 0:
if scale == 2:
flops_list = torch.Tensor([9.60,12.32,15.04,17.76,20.47,23.19,25.91,28.63,31.35,34.07,36.79,39.51,42.23,44.95,47.67,50.38,53.10,55.82,58.54,61.26,63.98,66.70,69.42,72.14,74.86,77.57,80.29,83.01,85.73,88.45,91.17,93.89])
flops_list = flops_list[exit_interval-1::exit_interval]
elif scale == 3:
flops_list = torch.Tensor([16.48,19.19,21.91,24.63,27.35,30.07,32.79,35.51,38.23,40.95,43.67,46.39,49.10,51.82,54.54,57.26,59.98,62.70,65.42,68.14,70.86,73.58,76.30,79.01,81.73,84.45,87.17,89.89,92.61,95.33,98.05,100.77])
flops_list = flops_list[exit_interval-1::exit_interval]
elif scale == 4:
flops_list = torch.Tensor([31.54,34.26,36.98,39.70,42.42,45.14,47.86,50.58,53.29,56.01,58.73,61.45,64.17,66.89,69.61,72.33,75.05,77.77,80.49,83.20,85.92,88.64,91.36,94.08,96.80,99.52,102.24,104.96,107.68,110.40,113.11,115.83])
flops_list = flops_list[exit_interval-1::exit_interval]
elif model_name.find("RCAN") >= 0:
if scale == 2:
flops_list = torch.Tensor([3.94,7.43,10.92,14.41,17.90,21.39,24.88,28.38,31.87,35.36])
flops_list = flops_list[exit_interval-1::exit_interval]
elif scale == 3:
flops_list = torch.Tensor([4.38,7.87,11.36,14.86,18.35,21.84,25.33,28.82,32.31,35.80])
flops_list = flops_list[exit_interval-1::exit_interval]
elif scale == 4:
flops_list = torch.Tensor([5.35,8.84,12.33,15.82,19.31,22.80,26.29,29.79,33.28,36.77])
flops_list = flops_list[exit_interval-1::exit_interval]
elif model_name.find("VDSR") >= 0:
if scale == 2:
flops_list = torch.Tensor([0.37,0.72,1.06,1.40,1.74,2.08,2.42,2.76,3.10,3.44,3.78,4.12,4.47,4.81,5.15,5.49,5.83,6.17])
flops_list = flops_list[exit_interval-1::exit_interval]
elif scale == 3:
flops_list = torch.Tensor([0.84,1.61,2.38,3.14,3.91,4.68,5.44,6.21,6.98,7.75,8.51,9.28,10.05,10.81,11.58,12.35,13.12,13.88])
flops_list = flops_list[exit_interval-1::exit_interval]
elif scale == 4:
flops_list = torch.Tensor([1.50,2.86,4.22,5.59,6.95,8.32,9.68,11.04,12.41,13.77,15.13,16.50,17.86,19.22,20.59,21.95,23.32,24.68])
flops_list = flops_list[exit_interval-1::exit_interval]
elif model_name.find("ECBSR") >= 0:
if scale == 2:
flops_list = torch.Tensor([0.11,0.19,0.28,0.36,0.45,0.53,0.62,0.70,0.79,0.87,0.96,1.04,1.13,1.21,1.30,1.38])
flops_list = flops_list[exit_interval-1::exit_interval]
elif scale == 3:
flops_list = torch.Tensor([0.13,0.21,0.30,0.38,0.47,0.55,0.64,0.72,0.81,0.89,0.98,1.06,1.15,1.23,1.32,1.40])
flops_list = flops_list[exit_interval-1::exit_interval]
elif scale == 4:
flops_list = torch.Tensor([0.15,0.24,0.32,0.41,0.49,0.58,0.66,0.75,0.83,0.92,1.00,1.09,1.17,1.26,1.34,1.43])
flops_list = flops_list[exit_interval-1::exit_interval]
elif model_name.find("RRDB") >= 0:
if scale == 4:
flops_list = torch.Tensor([4.88,6.54,8.20,9.85,11.51,13.17,14.83,16.49,18.14,19.80,21.46,23.12,24.77,26.43,28.09,29.75,31.41,33.06,34.72,36.38])
flops_list = flops_list[exit_interval-1::exit_interval]
elif model_name.find("SWINIR") >= 0:
if scale == 4:
flops_list = torch.Tensor([6.52, 11.09, 15.67, 20.25, 24.83, 29.41])
flops_list = flops_list[exit_interval-1::exit_interval]
num = exit_list.sum()
flops = (flops_list*exit_list).sum() / num
percent = flops / flops_list[-1] * 100.0
return flops, percent
if __name__ == "__main__":
import time
tic = time.time()
img1 = torch.ones(32,3,96,96)*101
img2 = torch.ones(32,3,96,96)*100
# print(img1)
# print(img2)
psnr = calc_psnr(img1, img2, 2, 255)
print(psnr)
toc = time.time()
print(toc-tic)