forked from guoyinwang/LEAM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathglove_generate.py
39 lines (31 loc) · 1.19 KB
/
glove_generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import gensim
import cPickle
import numpy as np
def load_embedding_vectors_glove_gensim(vocabulary, filename):
print("loading embedding")
model = gensim.models.KeyedVectors.load_word2vec_format(filename)
vector_size = model.vector_size
embedding_vectors = np.random.uniform(-0.25, 0.25, (len(vocabulary), vector_size))
glove_vocab = list(model.vocab.keys())
count = 0
mis_count = 0
for word in vocabulary.keys():
idx = vocabulary.get(word)
if word in glove_vocab:
embedding_vectors[idx] = model.wv[word]
count += 1
else:
mis_count += 1
print("num of vocab in glove: {}".format(count))
print("num of vocab not in glove: {}".format(mis_count))
return embedding_vectors
if __name__ == '__main__':
loadpath = "yelp_full.p"
embpath = "yelp_full_glove.p"
x = cPickle.load(open(loadpath, "rb"))
train, val, test = x[0], x[1], x[2]
train_lab, val_lab, test_lab = x[3], x[4], x[5]
wordtoix, ixtoword = x[6], x[7]
print("load data finished")
y = load_embedding_vectors_glove_gensim(wordtoix,'glove.840B.300d.w2vformat.txt' )
cPickle.dump([y.astype(np.float32)], open(embpath, 'wb'))