-
Notifications
You must be signed in to change notification settings - Fork 40
/
crnn_main.py
247 lines (204 loc) · 9.02 KB
/
crnn_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
from __future__ import print_function
import argparse
import random
import torch
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
from torch.autograd import Variable
import numpy as np
import sys
sys.path.insert(0, 'pytorch_ctc')
from ctc_ent import ctc_ent_cost
import os
import utils
import dataset
import models.crnn as crnn
import pickle
parser = argparse.ArgumentParser()
parser.add_argument('--trainroot', required=True, help='path to dataset')
parser.add_argument('--valroot', required=True, help='path to dataset')
parser.add_argument('--workers', type=int, help='number of data loading workers', default=2)
parser.add_argument('--batchSize', type=int, default=64, help='input batch size')
parser.add_argument('--imgH', type=int, default=32, help='the height of the input image to network')
parser.add_argument('--imgW', type=int, default=100, help='the width of the input image to network')
parser.add_argument('--nh', type=int, default=256, help='size of the lstm hidden state')
parser.add_argument('--niter', type=int, default=25, help='number of epochs to train for')
parser.add_argument('--lr', type=float, default=1e-3, help='learning rate for Critic, default=0.00005')
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5')
parser.add_argument('--cuda', action='store_true', help='enables cuda')
parser.add_argument('--ngpu', type=int, default=1, help='number of GPUs to use')
parser.add_argument('--crnn', default='', help="path to crnn (to continue training)")
parser.add_argument('--alphabet', type=str, default='0123456789abcdefghijklmnopqrstuvwxyz')
parser.add_argument('--experiment', default=None, help='Where to store samples and models')
parser.add_argument('--displayInterval', type=int, default=500, help='Interval to be displayed')
parser.add_argument('--n_test_disp', type=int, default=10, help='Number of samples to display when test')
parser.add_argument('--valInterval', type=int, default=500, help='Interval to be displayed')
parser.add_argument('--saveInterval', type=int, default=500, help='Interval to be displayed')
parser.add_argument('--adam', action='store_true', help='Whether to use adam (default is rmsprop)')
parser.add_argument('--adadelta', action='store_true', help='Whether to use adadelta (default is rmsprop)')
parser.add_argument('--keep_ratio', action='store_true', help='whether to keep ratio for image resize')
parser.add_argument('--random_sample', action='store_true', help='whether to sample the dataset with random sampler')
parser.add_argument('--eval_all', action='store_true', help='whether evaluate on the whole dataset')
parser.add_argument('--max_norm', default=400, type=int, help='Norm cutoff to prevent explosion of gradients')
parser.add_argument('--h_rate', type=float, default=0.1, help='h_rate for max ent reg. default=0.1')
opt = parser.parse_args()
print(opt)
if opt.experiment is None:
opt.experiment = 'expr'
os.system('mkdir {0}'.format(opt.experiment))
opt.manualSeed = random.randint(1, 10000) # fix seed
print("Random Seed: ", opt.manualSeed)
random.seed(opt.manualSeed)
np.random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
cudnn.benchmark = True
if torch.cuda.is_available() and not opt.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
train_dataset = dataset.lmdbDataset(root=opt.trainroot)
assert train_dataset
if False:#opt.random_sample: use shuffle
sampler = dataset.randomSequentialSampler(train_dataset, opt.batchSize)
else:
sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=opt.batchSize,
shuffle=True, sampler=sampler,
num_workers=int(opt.workers),
collate_fn=dataset.alignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio=opt.keep_ratio))
test_dataset = dataset.lmdbDataset(
root=opt.valroot, transform=dataset.resizeNormalize((100, 32)))
nclass = len(opt.alphabet) + 1
nc = 1
converter = utils.strLabelConverter(opt.alphabet)
# custom weights initialization called on crnn
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
crnn = crnn.CRNN(opt.imgH, nc, nclass, opt.nh)
crnn.apply(weights_init)
if opt.crnn != '':
print('loading pretrained model from %s' % opt.crnn)
while True:
try:
crnn.load_state_dict(torch.load(opt.crnn))
break
except:
if opt.cuda:
crnn.cuda()
crnn = torch.nn.DataParallel(crnn, device_ids=range(opt.ngpu))
print(crnn)
image = torch.FloatTensor(opt.batchSize, 3, opt.imgH, opt.imgH)
text = torch.IntTensor(opt.batchSize * 5)
length = torch.IntTensor(opt.batchSize)
if opt.cuda:
if opt.crnn == '':
crnn.cuda()
crnn = torch.nn.DataParallel(crnn, device_ids=range(opt.ngpu))
image = image.cuda()
image = Variable(image)
text = Variable(text)
length = Variable(length)
# loss averager
h_avg = utils.averager()
loss_avg = utils.averager()
# setup optimizer
if opt.adam:
optimizer = optim.Adam(crnn.parameters(), lr=opt.lr,
betas=(opt.beta1, 0.999))
elif opt.adadelta:
#do not use lr, according to orig paper...
#always meet inf, set lr to 1e-3
optimizer = optim.Adadelta(crnn.parameters(), lr=opt.lr)
else:
optimizer = optim.RMSprop(crnn.parameters(), lr=opt.lr)
def val(net, dataset, max_iter=100):
print('Start val')
for p in crnn.parameters():
p.requires_grad = False
net.eval()
data_loader = torch.utils.data.DataLoader(
dataset, shuffle=False, batch_size=opt.batchSize, num_workers=int(opt.workers))
val_iter = iter(data_loader)
i = 0
n_correct_greed = 0
h_avg = utils.averager()
loss_avg = utils.averager()
if opt.eval_all:
max_iter = len(data_loader)
else:
max_iter = min(max_iter, len(data_loader))
for i in range(max_iter):
data = val_iter.next()
i += 1
cpu_images, cpu_texts = data
batch_size = cpu_images.size(0)
utils.loadData(image, cpu_images)
t, l = converter.encode(cpu_texts)
utils.loadData(text, t)
utils.loadData(length, l)
preds = crnn(image)
preds_size = Variable(torch.IntTensor([preds.size(0)] * batch_size))
H, cost = ctc_ent_cost(preds, text, preds_size, length, sumed=False)
h_avg.add(H.sum()/batch_size)
loss_avg.add(cost.sum()/batch_size)
_, preds = preds.max(2)
preds = preds.transpose(1, 0).contiguous().view(-1)
preds_greed = converter.decode(preds.data, preds_size.data, raw=False)
for idx, (pred_greed, target) in enumerate(zip(preds_greed, cpu_texts)):
if pred_greed == target.lower():
n_correct_greed += 1
raw_preds = converter.decode(preds.data, preds_size.data, raw=True)[:opt.n_test_disp]
for raw_pred, pred, gt in zip(raw_preds, preds_greed, cpu_texts):
print('%-20s => %-20s, gt: %-20s' % (raw_pred, pred, gt))
accuracy_greed = n_correct_greed / float(max_iter * opt.batchSize)
print('Test H: %f, loss: %f, accuray_greed: %f' % (h_avg.val(), loss_avg.val(), accuracy_greed))
def trainBatch(net, optimizer):
data = train_iter.next()
cpu_images, cpu_texts = data
batch_size = cpu_images.size(0)
utils.loadData(image, cpu_images)
t, l = converter.encode(cpu_texts)
utils.loadData(text, t)
utils.loadData(length, l)
preds = crnn(image)
preds_size = Variable(torch.IntTensor([preds.size(0)] * batch_size))
# length (batch)
H, cost = ctc_ent_cost(preds, text, preds_size, length)
cost_sum = cost.data.sum()
inf = float("inf")
if cost_sum == inf or cost_sum == -inf or cost_sum<=-1e5 or torch.isnan(cost) or torch.isnan(H):
print("Warning: received an inf loss, setting loss value to 0")
return torch.zeros(H.size()), torch.zeros(cost.size())
crnn.zero_grad()
(-opt.h_rate*H + (1-opt.h_rate)*cost).backward()
torch.nn.utils.clip_grad_norm(crnn.parameters(), opt.max_norm)
optimizer.step()
return H / batch_size, cost / batch_size
## valid at the beginning
for epoch in range(opt.niter):
train_iter = iter(train_loader)
i = 0
while i < len(train_loader):
for p in crnn.parameters():
p.requires_grad = True
crnn.train()
H, cost = trainBatch(crnn, optimizer)
h_avg.add(H)
loss_avg.add(cost)
i += 1
if i % opt.displayInterval == 0:
print('[%d/%d][%d/%d] H: %f, Loss: %f' %
(epoch, opt.niter, i, len(train_loader), h_avg.val(), loss_avg.val()))
h_avg.reset()
loss_avg.reset()
if i % opt.valInterval == 0:
val(crnn, test_dataset)
# save checkpoint
if i % opt.saveInterval == 0 or (opt.saveInterval >= len(train_loader) and i == len(train_loader)-1):
torch.save(
crnn.state_dict(), '{0}/netCRNN_{1}_{2}.pth'.format(opt.experiment, epoch, i))