-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtwoparts_FS.cpp
228 lines (191 loc) · 8.79 KB
/
twoparts_FS.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
//
// Created by ljx on 2022/11/10.
//
#include <iostream>
#include "utils.h"
#include "string.h"
#include <opencv2/highgui.hpp>
#include <ImageProcess.hpp>
#include <MNN/expr/Module.hpp>
#include <MNN/expr/ExprCreator.hpp>
#include <MNN/expr/Expr.hpp>
#include<sys/time.h>
#include <MNN/expr/ExecutorScope.hpp>
#define STB_IMAGE_IMPLEMENTATION
//#define STBI_NO_STDIO
#include "stb_image.h"
int main(int argc, char **argv) {
if (argc < 3) {
std::cout << "modelpath: mnnpath:\n"
<< "data_path: images.txt\n"
<< "output_path:: output_dir" << std::endl;
return -1;
}
const std::string mnn_path = argv[1];
//计算加载时间
float load_time_use = 0;
struct timeval load_start;
struct timeval load_end;
gettimeofday(&load_start,NULL);
const std::vector<std::string> input_names{"left", "right"};
const std::vector<std::string> output_names{"fmap1", "fmap2", "fmap1_dw8", "fmap2_dw8", "fmap1_dw16", "fmap2_dw16"};
const std::vector<std::string> input_names_fuse{"fmap1", "fmap2", "fmap1_dw8", "fmap2_dw8", "fmap1_dw16", "fmap2_dw16"};
const std::vector<std::string> output_names_fuse{"output"};
MNNForwardType type = MNN_FORWARD_OPENCL;
MNN::BackendConfig backend_config; // default backend config
int precision = MNN::BackendConfig::PrecisionMode::Precision_Normal;
backend_config.precision = static_cast<MNN::BackendConfig::PrecisionMode>(precision);
std::shared_ptr<MNN::Express::Executor> executor(
MNN::Express::Executor::newExecutor(type, backend_config, 4));
MNN::Express::ExecutorScope scope(executor);
MNN::Express::Module::Config mConfig;
std::shared_ptr<MNN::Express::Module> module(
MNN::Express::Module::load(input_names, output_names, "../crestereo_without_flow_first.mnn", &mConfig));
gettimeofday(&load_end,NULL);
load_time_use=(load_end.tv_sec-load_start.tv_sec)*1000000+(load_end.tv_usec-load_start.tv_usec);
std::cout<<"load model time : "<<load_time_use/1000.0<<"ms"<<std::endl;
float load_time_use_fuse = 0;
struct timeval load_start_fuse;
struct timeval load_end_fuse;
gettimeofday(&load_start_fuse,NULL);
// MNN::Express::Module::Config mConfig1;
std::shared_ptr<MNN::Express::Module> module_fuse(
MNN::Express::Module::load(input_names_fuse, output_names_fuse, "../crestereo_without_flow_second.mnn", &mConfig));
gettimeofday(&load_end_fuse,NULL);
load_time_use_fuse=(load_end_fuse.tv_sec-load_start_fuse.tv_sec)*1000000+(load_end_fuse.tv_usec-load_start_fuse.tv_usec);
std::cout<<"second model time : "<<load_time_use_fuse/1000.0<<"ms"<<std::endl;
auto info = module->getInfo();
std::string imagespath = argv[2];
std::vector<std::string> limg;
std::vector<std::string> rimg;
ReadImages(imagespath, limg, rimg);
for (size_t i = 0; i < limg.size(); ++i) {
int w = 320;
int h = 240;
int c = 3;
int outbpp = 4;
auto inputLeft = MNN::Express::_Input({1, 3, h, w}, MNN::Express::NC4HW4, halide_type_of<float>());
auto inputRight = MNN::Express::_Input({1, 3, h, w}, MNN::Express::NC4HW4, halide_type_of<float>());
auto fmap1 = MNN::Express::_Input({1, 256, 60, 80}, MNN::Express::NCHW, halide_type_of<float>());
auto fmap2 = MNN::Express::_Input({1, 256, 60, 80}, MNN::Express::NCHW, halide_type_of<float>());
auto fmap1_dw8 = MNN::Express::_Input({1, 256, 30, 40}, MNN::Express::NCHW, halide_type_of<float>());
auto fmap2_dw8 = MNN::Express::_Input({1, 256, 30, 40}, MNN::Express::NCHW, halide_type_of<float>());
auto fmap1_dw16 = MNN::Express::_Input({1, 256, 15, 20}, MNN::Express::NCHW, halide_type_of<float>());
auto fmap2_dw16 = MNN::Express::_Input({1, 256, 15, 20}, MNN::Express::NCHW, halide_type_of<float>());
auto imgL = limg.at(i);
auto imgR = rimg.at(i);
int width, height, channel;
auto imageL = stbi_load(imgL.c_str(), &width, &height, &channel, outbpp);
auto imageR = stbi_load(imgR.c_str(), &width, &height, &channel, outbpp);
// cv::Mat gray1_mat(h, w, CV_8UC3, imageR);
// imshow("去雾图像显示", gray1_mat);
// cv::waitKey();
// std::cout << "load images success" << std::endl;
//data to gpu time
float data_to_gpu = 0;
struct timeval data_gpu_start;
struct timeval data_gpu_end;
gettimeofday(&data_gpu_start,NULL);
MNN::CV::Matrix trans;
trans.setScale((float)(width-1) / (w-1), (float)(height-1) / (h-1));
MNN::CV::ImageProcess::Config config;
config.filterType = MNN::CV::BILINEAR;
// config.sourceFormat = MNN::CV::GRAY;
// config.destFormat = MNN::CV::BGR;
//
// std::shared_ptr<MNN::CV::ImageProcess> pretreat(MNN::CV::ImageProcess::create(config));
// pretreat->setMatrix(trans);
// pretreat->convert((uint8_t *) imageL, width, height, 0, inputLeft->writeMap<float>() , w, h,
// outbpp, 0, halide_type_of<float>());
// stbi_image_free(imageL);
//
// std::shared_ptr<MNN::CV::ImageProcess> pretreat1(MNN::CV::ImageProcess::create(config));
// pretreat1->setMatrix(trans);
// pretreat1->convert((uint8_t *) imageR, width, height, 0, inputRight->writeMap<float>() , w, h,
// outbpp, 0, halide_type_of<float>());
// stbi_image_free(imageR);
//
// gettimeofday(&data_gpu_end,NULL);
// data_to_gpu=(data_gpu_end.tv_sec-data_gpu_start.tv_sec)*1000000+(data_gpu_end.tv_usec-data_gpu_start.tv_usec);
// std::cout<<"data_to_gpu time : "<<data_to_gpu<<std::endl;
//计算forward时间
float forward_time_use = 0;
struct timeval forward_start;
struct timeval forward_end;
gettimeofday(&forward_start,NULL);
std::cout << "forward" << std::endl;
auto output_extract = module->onForward({inputLeft, inputRight});
gettimeofday(&forward_end,NULL);
forward_time_use=(forward_end.tv_sec-forward_start.tv_sec)*1000000+(forward_end.tv_usec-forward_start.tv_usec);
std::cout<<"first part forward time : "<<forward_time_use/1000.0<<"ms"<<std::endl;
float forward_time_last = 0;
struct timeval forward_start_last;
struct timeval forward_end_last;
gettimeofday(&forward_start_last,NULL);
auto outputs = module_fuse->onForward({fmap1, fmap2,fmap1_dw8, fmap2_dw8, fmap1_dw16,fmap2_dw16});
gettimeofday(&forward_end_last,NULL);
forward_time_last=(forward_end_last.tv_sec-forward_start_last.tv_sec)*1000000+(forward_end_last.tv_usec-forward_start_last.tv_usec);
std::cout<<"last part forward time : "<<forward_time_last/1000.0<<"ms"<<std::endl;
// //data to cpu time
// float data_to_cpu = 0;
// struct timeval data_cpu_start;
// struct timeval data_cpu_end;
// gettimeofday(&data_cpu_start,NULL);
//
// auto output = MNN::Express::_Convert(outputs[0], MNN::Express::NHWC);
// output = MNN::Express::_Reshape(output, {2, h, w});
// auto value = output->readMap<float>();
//
// gettimeofday(&data_cpu_end,NULL);
// data_to_cpu=(data_cpu_end.tv_sec-data_cpu_start.tv_sec)*1000000+(data_cpu_end.tv_usec-data_cpu_start.tv_usec);
// std::cout<<"data_to_cpu time : "<<data_to_cpu<<std::endl;
//
// //output赋值给mat
// int outSize_w = w;
// int outSize_h = h;
// cv::Mat outimg;
// outimg.create(cv::Size(outSize_w, outSize_h), CV_32FC1);
//
// cv::Mat showImg;
//
// for (int i=0; i<outSize_h; ++i) {
// {
// for (int j=0; j<outSize_w; ++j)
// {
// outimg.at<float>(i,j) = value[(i*outSize_w+j)*2];
// }
// }
// }
//
// //可视化
// double minv = 0.0, maxv = 0.0;
// double* minp = &minv;
// double* maxp = &maxv;
// minMaxIdx(outimg,minp,maxp);
// float minvalue = (float)minv;
// float maxvalue = (float)maxv;
//
// for (int i=0; i<outSize_h; ++i) {
// {
// for (int j=0; j<outSize_w; ++j)
// {
//
// outimg.at<float>(i,j) = 255* (outimg.at<float>(i,j) - minvalue)/(maxvalue-minvalue);
// }
// }
// }
//
// outimg.convertTo(showImg,CV_8U);
// cv::Mat colorimg;
// cv::Mat colorimgfinal;
//// cv2.applyColorMap(cv2.convertScaleAbs(norm_disparity_map,1), cv2.COLORMAP_MAGMA)
// cv::convertScaleAbs(showImg,colorimg);
// cv::applyColorMap(colorimg,colorimgfinal,cv::COLORMAP_PARULA);
// namedWindow("image", cv::WINDOW_AUTOSIZE);
// imshow("image", colorimgfinal);
// cv::waitKey(0);
//
// std::cout << "success" << std::endl;
}
return 0;
}