-
Notifications
You must be signed in to change notification settings - Fork 4
/
make_dataset_shanghai.py
98 lines (83 loc) · 3.4 KB
/
make_dataset_shanghai.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import h5py
import scipy.io as io
import PIL.Image as Image
import numpy as np
import os
import glob
from matplotlib import pyplot as plt
from scipy.ndimage.filters import gaussian_filter
import scipy
import json
from matplotlib import cm as CM
from image import *
from model import CSRNet
import torch
import cv2
def gaussian_filter_density(gt):
print gt.shape
density = np.zeros(gt.shape, dtype=np.float32)
gt_count = np.count_nonzero(gt)
if gt_count == 0:
return density
pts = np.array(zip(np.nonzero(gt)[1], np.nonzero(gt)[0]))
leafsize = 2048
# build kdtree
tree = scipy.spatial.KDTree(pts.copy(), leafsize=leafsize)
# query kdtree
distances, locations = tree.query(pts, k=4)
print 'generate density...'
for i, pt in enumerate(pts):
pt2d = np.zeros(gt.shape, dtype=np.float32)
pt2d[pt[1],pt[0]] = 1.
if gt_count > 1:
sigma = (distances[i][1]+distances[i][2]+distances[i][3])*0.1
else:
sigma = np.average(np.array(gt.shape))/2./2. #case: 1 point
density += scipy.ndimage.filters.gaussian_filter(pt2d, sigma, mode='constant')
print 'done.'
return density
root = '/home/liulei/Downloads/CSRNet-pytorch-master/'
# part_A_train = os.path.join(root,'Shanghai/newpartA/train_data','images')
# part_A_test = os.path.join(root,'Shanghai/newpartA/test_data','images')
# part_B_train = os.path.join(root,'Shanghai/newpartB/train_data','images')
# part_B_test = os.path.join(root,'Shanghai/newpartB/test_data','images')
part_A_train = os.path.join(root,'Shanghai/part_A_final/train_data','images')
part_A_test = os.path.join(root,'Shanghai/part_A_final/test_data','images')
part_B_train = os.path.join(root,'Shanghai/part_B_final/train_data','images')
part_B_test = os.path.join(root,'Shanghai/part_B_final/test_data','images')
path_sets = [part_B_test]
img_paths = []
for path in path_sets:
for img_path in glob.glob(os.path.join(path, '*.jpg')):
img_paths.append(img_path)
for img_path in img_paths:
print img_path
mask_path = img_path.replace('images', 'images/mask').replace('part_B_final','newpartB')
mat = io.loadmat(img_path.replace('.jpg', '.mat').replace('images', 'ground_truth').replace('IMG_', 'GT_IMG_'))
img = cv2.imread(img_path)
mask = cv2.imread(mask_path.replace('.jpg', 'BW.jpg'), 1)
ret, mask1 = cv2.threshold(mask, 50, 255, cv2.THRESH_BINARY_INV)
new_img = np.multiply(img, mask1 / 255)
k = np.zeros((img.shape[0],img.shape[1]))
gt = mat["image_info"][0,0][0,0][0]
for i in range(0,len(gt)):
if int(gt[i][1])<img.shape[0] and int(gt[i][0])<img.shape[1]:
k[int(gt[i][1]),int(gt[i][0])]=1
GT = np.sum(k)
str1 = img_path.split('/images/')
img_name = str1[1]
file = open('./detection_result/testB.txt', 'r')
js = file.read()
dict = json.loads(js)
detection = dict[img_name]
GT_detection = GT - detection
k = gaussian_filter(k,15)
new_img = np.multiply(img, mask1 / 255)
cv2.imwrite(img_path.replace('part_B_final','newpartB'),new_img)
mask2 = cv2.cvtColor(mask1, cv2.COLOR_BGR2GRAY)
k1 = np.multiply(k, mask2 / 255)
target_sum = np.sum(k1)
k = gaussian_filter(k, 15) * GT_detection / target_sum
k = np.multiply(k, mask2 / 255)
with h5py.File(img_path.replace('.jpg','.h5').replace('images','ground_truth').replace('part_B_final','newpartB'), 'w') as hf:
hf['density'] = k