-
Notifications
You must be signed in to change notification settings - Fork 23
/
data_generator.py
193 lines (150 loc) · 7.8 KB
/
data_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import tensorflow as tf
import numpy as np
import os
# from matplotlib import pyplot as plt
from tensorflow.python.framework import dtypes
from tensorflow.python.framework.ops import convert_to_tensor
import skimage as sk
from skimage import transform
import SimpleITK as sitk
IMAGENET_MEAN = tf.constant([123.68, 116.779, 103.939], dtype=tf.float32)
class ImageDataGenerator(object):
def __init__(self, txt_file, mode, batch_size, num_classes, shuffle=True, buffer_size=5):
"""Create a new ImageDataGenerator.
Receives a path string to a text file, where each line has a path string to an image and
separated by a space, then with an integer referring to the class number.
Args:
txt_file: path to the text file.
mode: either 'training' or 'validation'. Depending on this value, different parsing functions will be used.
batch_size: number of images per batch.
num_classes: number of classes in the dataset.
shuffle: wether or not to shuffle the data in the dataset and the initial file list.
buffer_size: number of images used as buffer for TensorFlows shuffling of the dataset.
Raises:
ValueError: If an invalid mode is passed.
"""
self.txt_file = txt_file
self.num_classes = num_classes
# retrieve the data from the text file
self._read_txt_file()
# number of samples in the dataset
self.data_size = len(self.img_paths)
# initial shuffling of the file and label lists together
if shuffle:
self._shuffle_lists()
# convert lists to TF tensor
self.img_paths = convert_to_tensor(self.img_paths, dtype=dtypes.string)
# create dataset
data = tf.data.Dataset.from_tensor_slices((self.img_paths))
# repeat indefinitely (train.py will count the epochs)
data = data.repeat()
# distinguish between train/infer. when calling the parsing functions
self.get_patches_fn = lambda filename: tf.py_func(self.extract_patch, [filename, [384,384,3], 2], [tf.float32, tf.float32])
if mode == 'training':
data = data.map(self.get_patches_fn, num_parallel_calls=8)
elif mode == 'inference':
data = data.map(self._parse_function_inference, num_parallel_calls=8)
else:
raise ValueError("Invalid mode '%s'." % (mode))
# shuffle the first `buffer_size` elements of the dataset
if shuffle:
data = data.shuffle(buffer_size=buffer_size)
# create a new dataset with batches of images
data = data.batch(batch_size)
self.data = data
def _read_txt_file(self):
"""Read the content of the text file and store it into lists."""
with open(self.txt_file, 'r') as f:
rows = f.readlines()
self.img_paths = [row[:-1] for row in rows]
def _shuffle_lists(self):
"""Conjoined shuffling of the list of paths and labels."""
path = self.img_paths
permutation = np.random.permutation(self.data_size)
self.img_paths = []
for i in permutation:
self.img_paths.append(path[i])
def extract_patch(self, filename, patch_size, num_class, num_patches=1):
"""Input parser for samples of the training set."""
# convert label number into one-hot-encoding
image, mask = self.parse_fn(filename) # get the image and its mask
image_patches = []
mask_patches = []
num_patches_now = 0
while num_patches_now < num_patches:
# z = np.random.randint(1, mask.shape[2]-1)
z = self.random_patch_center_z(mask, patch_size=patch_size) # define the centre of current patch
image_patch = image[:, :, z-1:z+2]
mask_patch = mask[:, :, z]
image_patches.append(image_patch)
mask_patches.append(mask_patch)
num_patches_now += 1
image_patches = np.stack(image_patches) # make into 4D (batch_size, patch_size[0], patch_size[1], patch_size[2])
mask_patches = np.stack(mask_patches) # make into 4D (batch_size, patch_size[0], patch_size[1], patch_size[2])
mask_patches = self._label_decomp(mask_patches, num_cls=num_class) # make into 5D (batch_size, patch_size[0], patch_size[1], patch_size[2], num_classes)
#print image_patches.shape
return image_patches[0,...].astype(np.float32), mask_patches[0,...].astype(np.float32)
def random_patch_center_z(self, mask, patch_size):
# bounded within the brain mask region
limX, limY, limZ = np.where(mask>0)
if (np.min(limZ) + patch_size[2] // 2 + 1) < (np.max(limZ) - patch_size[2] // 2):
z = np.random.randint(low = np.min(limZ) + patch_size[2] // 2 + 1, high = np.max(limZ) - patch_size[2] // 2)
else:
z = np.random.randint(low = patchsize[2]//2, high = mask.shape[2] - patchsize[2]//2)
limX, limY, limZ = np.where(mask>0)
z = np.random.randint(low = max(1, np.min(limZ)), high = min(np.max(limZ), mask.shape[2] - 2))
# z = np.random.randint(low = max(1, np.min(limZ)), high = min(np.max(limZ), mask.shape[2] - 2))
return z
def parse_fn(self, data_path):
'''
:param image_path: path to a folder of a patient
:return: normalized entire image with its corresponding label
In an image, the air region is 0, so we only calculate the mean and std within the brain area
For any image-level normalization, do it here
'''
path = data_path.split(",")
image_path = path[0]
label_path = path[1]
#itk_image = zoom2shape(image_path, [512,512])#os.path.join(image_path, 'T1_unbiased_brain_rigid_to_mni.nii.gz'))
#itk_mask = zoom2shape(label_path, [512,512], label=True)#os.path.join(image_path, 'T1_brain_seg_rigid_to_mni.nii.gz'))
itk_image = sitk.ReadImage(image_path)#os.path.join(image_path, 'T1_unbiased_brain_rigid_to_mni.nii.gz'))
itk_mask = sitk.ReadImage(label_path)#os.path.join(image_path, 'T1_brain_seg_rigid_to_mni.nii.gz'))
# itk_image = sitk.ReadImage(os.path.join(image_path, 'T2_FLAIR_unbiased_brain_rigid_to_mni.nii.gz'))
image = sitk.GetArrayFromImage(itk_image)
mask = sitk.GetArrayFromImage(itk_mask)
#image[image >= 1000] = 1000
binary_mask = np.ones(mask.shape)
mean = np.sum(image * binary_mask) / np.sum(binary_mask)
std = np.sqrt(np.sum(np.square(image - mean) * binary_mask) / np.sum(binary_mask))
image = (image - mean) / std # normalize per image, using statistics within the brain, but apply to whole image
mask[mask==2] = 1
return image.transpose([1,2,0]), mask.transpose([1,2,0]) # transpose the orientation of the
def _label_decomp(self, label_vol, num_cls):
"""
decompose label for softmax classifier
original labels are batchsize * W * H * 1, with label values 0,1,2,3...
this function decompse it to one hot, e.g.: 0,0,0,1,0,0 in channel dimension
numpy version of tf.one_hot
"""
one_hot = []
for i in xrange(num_cls):
_vol = np.zeros(label_vol.shape)
_vol[label_vol == i] = 1
one_hot.append(_vol)
return np.stack(one_hot, axis=-1)
# def augment(self, x):
# # add more types of augmentations here
# augmentations = [self.flip]
# for f in augmentations:
# x = tf.cond(tf.random_uniform([], 0, 1) < 0.25, lambda: f(x), lambda: x)
# return x
# def flip(self, x):
# """Flip augmentation
# Args:
# x: Image to flip
# Returns:
# Augmented image
# """
# x = tf.image.random_flip_left_right(x)
# # x = tf.image.random_flip_up_down(x)
# return x