Task: Image Super-Resolution, Image denoising, JPEG compression artifact reduction
Image restoration is a long-standing low-level vision problem that aims to restore high-quality images from low-quality images (e.g., downscaled, noisy and compressed images). While state-of-the-art image restoration methods are based on convolutional neural networks, few attempts have been made with Transformers which show impressive performance on high-level vision tasks. In this paper, we propose a strong baseline model SwinIR for image restoration based on the Swin Transformer. SwinIR consists of three parts: shallow feature extraction, deep feature extraction and high-quality image reconstruction. In particular, the deep feature extraction module is composed of several residual Swin Transformer blocks (RSTB), each of which has several Swin Transformer layers together with a residual connection. We conduct experiments on three representative tasks: image super-resolution (including classical, lightweight and real-world image super-resolution), image denoising (including grayscale and color image denoising) and JPEG compression artifact reduction. Experimental results demonstrate that SwinIR outperforms state-of-the-art methods on different tasks by up to 0.14~0.45dB, while the total number of parameters can be reduced by up to 67%.
Evaluated on Y channels, scale
pixels in each border are cropped before evaluation.
The metrics are PSNR / SSIM
.
Model | Dataset | Task | Scale | PSNR | SSIM | Training Resources | Download |
---|---|---|---|---|---|---|---|
swinir_x2s48w8d6e180_8xb4-lr2e-4-500k_div2k | Set5 | Image Super-Resolution | x2 | 38.3240 | 0.9626 | 8 | model | log |
swinir_x2s48w8d6e180_8xb4-lr2e-4-500k_div2k | Set14 | Image Super-Resolution | x2 | 34.1174 | 0.9230 | 8 | model | log |
swinir_x2s48w8d6e180_8xb4-lr2e-4-500k_div2k | DIV2K | Image Super-Resolution | x2 | 37.8921 | 0.9481 | 8 | model | log |
swinir_x3s48w8d6e180_8xb4-lr2e-4-500k_div2k | Set5 | Image Super-Resolution | x3 | 34.8640 | 0.9317 | 8 | model | log |
swinir_x3s48w8d6e180_8xb4-lr2e-4-500k_div2k | Set14 | Image Super-Resolution | x3 | 30.7669 | 0.8508 | 8 | model | log |
swinir_x3s48w8d6e180_8xb4-lr2e-4-500k_div2k | DIV2K | Image Super-Resolution | x3 | 34.1397 | 0.8917 | 8 | model | log |
swinir_x4s48w8d6e180_8xb4-lr2e-4-500k_div2k | Set5 | Image Super-Resolution | x4 | 32.7315 | 0.9029 | 8 | model | log |
swinir_x4s48w8d6e180_8xb4-lr2e-4-500k_div2k | Set14 | Image Super-Resolution | x4 | 28.9065 | 0.7915 | 8 | model | log |
swinir_x4s48w8d6e180_8xb4-lr2e-4-500k_div2k | DIV2K | Image Super-Resolution | x4 | 32.0953 | 0.8418 | 8 | model | log |
swinir_x2s64w8d6e180_8xb4-lr2e-4-500k_df2k | Set5 | Image Super-Resolution | x2 | 38.3971 | 0.9629 | 8 | model | log |
swinir_x2s64w8d6e180_8xb4-lr2e-4-500k_df2k | Set14 | Image Super-Resolution | x2 | 34.4149 | 0.9252 | 8 | model | log |
swinir_x2s64w8d6e180_8xb4-lr2e-4-500k_df2k | DIV2K | Image Super-Resolution | x2 | 37.9473 | 0.9488 | 8 | model | log |
swinir_x3s64w8d6e180_8xb4-lr2e-4-500k_df2k | Set5 | Image Super-Resolution | x3 | 34.9335 | 0.9323 | 8 | model | log |
swinir_x3s64w8d6e180_8xb4-lr2e-4-500k_df2k | Set14 | Image Super-Resolution | x3 | 30.9258 | 0.8540 | 8 | model | log |
swinir_x3s64w8d6e180_8xb4-lr2e-4-500k_df2k | DIV2K | Image Super-Resolution | x3 | 34.2830 | 0.8939 | 8 | model | log |
swinir_x4s64w8d6e180_8xb4-lr2e-4-500k_df2k | Set5 | Image Super-Resolution | x4 | 32.9214 | 0.9053 | 8 | model | log |
swinir_x4s64w8d6e180_8xb4-lr2e-4-500k_df2k | Set14 | Image Super-Resolution | x4 | 29.0792 | 0.7953 | 8 | model | log |
swinir_x4s64w8d6e180_8xb4-lr2e-4-500k_df2k | DIV2K | Image Super-Resolution | x4 | 32.3021 | 0.8451 | 8 | model | log |
Evaluated on Y channels, scale
pixels in each border are cropped before evaluation.
The metrics are PSNR / SSIM
.
Model | Dataset | Task | Scale | PSNR | SSIM | Training Resources | Download |
---|---|---|---|---|---|---|---|
swinir_x2s64w8d4e60_8xb4-lr2e-4-500k_div2k | Set5 | Image Super-Resolution | x2 | 38.1289 | 0.9617 | 8 | model | log |
swinir_x2s64w8d4e60_8xb4-lr2e-4-500k_div2k | Set14 | Image Super-Resolution | x2 | 33.8404 | 0.9207 | 8 | model | log |
swinir_x2s64w8d4e60_8xb4-lr2e-4-500k_div2k | DIV2K | Image Super-Resolution | x2 | 37.5844 | 0.9459 | 8 | model | log |
swinir_x3s64w8d4e60_8xb4-lr2e-4-500k_div2k | Set5 | Image Super-Resolution | x3 | 34.6037 | 0.9293 | 8 | model | log |
swinir_x3s64w8d4e60_8xb4-lr2e-4-500k_div2k | Set14 | Image Super-Resolution | x3 | 30.5340 | 0.8468 | 8 | model | log |
swinir_x3s64w8d4e60_8xb4-lr2e-4-500k_div2k | DIV2K | Image Super-Resolution | x3 | 33.8394 | 0.8867 | 8 | model | log |
swinir_x4s64w8d4e60_8xb4-lr2e-4-500k_div2k | Set5 | Image Super-Resolution | x4 | 32.4343 | 0.8984 | 8 | model | log |
swinir_x4s64w8d4e60_8xb4-lr2e-4-500k_div2k | Set14 | Image Super-Resolution | x4 | 28.7441 | 0.7861 | 8 | model | log |
swinir_x4s64w8d4e60_8xb4-lr2e-4-500k_div2k | DIV2K | Image Super-Resolution | x4 | 31.8636 | 0.8353 | 8 | model | log |
Evaluated on Y channels.
The metrics are NIQE
.
Model | Dataset | Task | NIQE | Training Resources | Download |
---|---|---|---|---|---|
swinir_gan-x2s64w8d6e180_8xb4-lr1e-4-600k_df2k-ost | RealSRSet+5images | Image Super-Resolution | 5.7975 | 8 | model | log |
swinir_psnr-x2s64w8d6e180_8xb4-lr1e-4-600k_df2k-ost | RealSRSet+5images | Image Super-Resolution | 7.2738 | 8 | model | log |
swinir_gan-x4s64w8d6e180_8xb4-lr1e-4-600k_df2k-ost | RealSRSet+5images | Image Super-Resolution | 5.2329 | 8 | model | log |
swinir_psnr-x4s64w8d6e180_8xb4-lr1e-4-600k_df2k-ost | RealSRSet+5images | Image Super-Resolution | 7.7460 | 8 | model | log |
swinir_gan-x4s64w8d9e240_8xb4-lr1e-4-600k_df2k-ost | RealSRSet+5images | Image Super-Resolution | 5.1464 | 8 | model | log |
swinir_psnr-x4s64w8d9e240_8xb4-lr1e-4-600k_df2k-ost | RealSRSet+5images | Image Super-Resolution | 7.6378 | 8 | model | log |
Evaluated on grayscale images.
The metrics are PSNR
.
Model | Dataset | Task | PSNR | Training Resources | Download |
---|---|---|---|---|---|
swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN15 | Set12 | Image denoising | 33.9731 | 8 | model | log |
swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN15 | BSD68 | Image denoising | 32.5203 | 8 | model | log |
swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN15 | Urban100 | Image denoising | 34.3424 | 8 | model | log |
swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN25 | Set12 | Image denoising | 31.6434 | 8 | model | log |
swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN25 | BSD68 | Image denoising | 30.1377 | 8 | model | log |
swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN25 | Urban100 | Image denoising | 31.9493 | 8 | model | log |
swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN50 | Set12 | Image denoising | 28.5651 | 8 | model | log |
swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN50 | BSD68 | Image denoising | 27.3157 | 8 | model | log |
swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN50 | Urban100 | Image denoising | 28.6626 | 8 | model | log |
Evaluated on RGB channels.
The metrics are PSNR
.
Evaluated on grayscale images. The metrics are `PSNR / SSIM
Model | Dataset | Task | PSNR | SSIM | Training Resources | Download |
---|---|---|---|---|---|---|
swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR10 | Classic5 | JPEG compression artifact reduction | 30.2746 | 0.8254 | 8 | model | log |
swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR10 | LIVE1 | JPEG compression artifact reduction | 29.8611 | 0.8292 | 8 | model | log |
swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR20 | Classic5 | JPEG compression artifact reduction | 32.5331 | 0.8753 | 8 | model | log |
swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR20 | LIVE1 | JPEG compression artifact reduction | 32.2667 | 0.8914 | 8 | model | log |
swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR30 | Classic5 | JPEG compression artifact reduction | 33.7504 | 0.8966 | 8 | model | log |
swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR30 | LIVE1 | JPEG compression artifact reduction | 33.7001 | 0.9179 | 8 | model | log |
swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR40 | Classic5 | JPEG compression artifact reduction | 34.5377 | 0.9087 | 8 | model | log |
swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR40 | LIVE1 | JPEG compression artifact reduction | 34.6846 | 0.9322 | 8 | model | log |
Evaluated on RGB channels.
The metrics are PSNR / SSIM
.
Model | Dataset | Task | PSNR | SSIM | Training Resources | Download |
---|---|---|---|---|---|---|
swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR10 | Classic5 | JPEG compression artifact reduction | 30.1019 | 0.8217 | 8 | model | log |
swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR10 | LIVE1 | JPEG compression artifact reduction | 28.0676 | 0.8094 | 8 | model | log |
swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR20 | Classic5 | JPEG compression artifact reduction | 32.3489 | 0.8727 | 8 | model | log |
swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR20 | LIVE1 | JPEG compression artifact reduction | 30.4514 | 0.8745 | 8 | model | log |
swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR30 | Classic5 | JPEG compression artifact reduction | 33.6028 | 0.8949 | 8 | model | log |
swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR30 | LIVE1 | JPEG compression artifact reduction | 31.8235 | 0.9023 | 8 | model | log |
swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR40 | Classic5 | JPEG compression artifact reduction | 34.4344 | 0.9076 | 8 | model | log |
swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR40 | LIVE1 | JPEG compression artifact reduction | 32.7610 | 0.9179 | 8 | model | log |
Train
Train Instructions
You can use the following commands to train a model with cpu or single/multiple GPUs.
# cpu train
# 001 Classical Image Super-Resolution (middle size)
# (setting1: when model is trained on DIV2K and with training_patch_size=48)
CUDA_VISIBLE_DEVICES=-1 python tools/train.py configs/swinir/swinir_x2s48w8d6e180_8xb4-lr2e-4-500k_div2k.py
CUDA_VISIBLE_DEVICES=-1 python tools/train.py configs/swinir/swinir_x3s48w8d6e180_8xb4-lr2e-4-500k_div2k.py
CUDA_VISIBLE_DEVICES=-1 python tools/train.py configs/swinir/swinir_x4s48w8d6e180_8xb4-lr2e-4-500k_div2k.py
# (setting2: when model is trained on DIV2K+Flickr2K and with training_patch_size=64)
CUDA_VISIBLE_DEVICES=-1 python tools/train.py configs/swinir/swinir_x2s64w8d6e180_8xb4-lr2e-4-500k_df2k.py
CUDA_VISIBLE_DEVICES=-1 python tools/train.py configs/swinir/swinir_x3s64w8d6e180_8xb4-lr2e-4-500k_df2k.py
CUDA_VISIBLE_DEVICES=-1 python tools/train.py configs/swinir/swinir_x4s64w8d6e180_8xb4-lr2e-4-500k_df2k.py
# 002 Lightweight Image Super-Resolution (small size)
CUDA_VISIBLE_DEVICES=-1 python tools/train.py configs/swinir/swinir_x2s64w8d4e60_8xb4-lr2e-4-500k_div2k.py
CUDA_VISIBLE_DEVICES=-1 python tools/train.py configs/swinir/swinir_x3s64w8d4e60_8xb4-lr2e-4-500k_div2k.py
CUDA_VISIBLE_DEVICES=-1 python tools/train.py configs/swinir/swinir_x4s64w8d4e60_8xb4-lr2e-4-500k_div2k.py
# 003 Real-World Image Super-Resolution
CUDA_VISIBLE_DEVICES=-1 python tools/train.py configs/swinir/swinir_gan-x2s64w8d6e180_8xb4-lr1e-4-600k_df2k-ost.py
CUDA_VISIBLE_DEVICES=-1 python tools/train.py configs/swinir/swinir_psnr-x2s64w8d6e180_8xb4-lr1e-4-600k_df2k-ost.py
CUDA_VISIBLE_DEVICES=-1 python tools/train.py configs/swinir/swinir_gan-x4s64w8d6e180_8xb4-lr1e-4-600k_df2k-ost.py
CUDA_VISIBLE_DEVICES=-1 python tools/train.py configs/swinir/swinir_psnr-x4s64w8d6e180_8xb4-lr1e-4-600k_df2k-ost.py
CUDA_VISIBLE_DEVICES=-1 python tools/train.py configs/swinir/swinir_gan-x4s64w8d9e240_8xb4-lr1e-4-600k_df2k-ost.py
CUDA_VISIBLE_DEVICES=-1 python tools/train.py configs/swinir/swinir_psnr-x4s64w8d9e240_8xb4-lr1e-4-600k_df2k-ost.py
# 004 Grayscale Image Deoising (middle size)
CUDA_VISIBLE_DEVICES=-1 python tools/train.py configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN15.py
CUDA_VISIBLE_DEVICES=-1 python tools/train.py configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN25.py
CUDA_VISIBLE_DEVICES=-1 python tools/train.py configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN50.py
# 005 Color Image Deoising (middle size)
CUDA_VISIBLE_DEVICES=-1 python tools/train.py configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-colorDN15.py
CUDA_VISIBLE_DEVICES=-1 python tools/train.py configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-colorDN25.py
CUDA_VISIBLE_DEVICES=-1 python tools/train.py configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-colorDN50.py
# 006 JPEG Compression Artifact Reduction (middle size, using window_size=7 because JPEG encoding uses 8x8 blocks)
# grayscale
CUDA_VISIBLE_DEVICES=-1 python tools/train.py configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR10.py
CUDA_VISIBLE_DEVICES=-1 python tools/train.py configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR20.py
CUDA_VISIBLE_DEVICES=-1 python tools/train.py configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR30.py
CUDA_VISIBLE_DEVICES=-1 python tools/train.py configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR40.py
# color
CUDA_VISIBLE_DEVICES=-1 python tools/train.py configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR10.py
CUDA_VISIBLE_DEVICES=-1 python tools/train.py configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR20.py
CUDA_VISIBLE_DEVICES=-1 python tools/train.py configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR30.py
CUDA_VISIBLE_DEVICES=-1 python tools/train.py configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR40.py
# single-gpu train
# 001 Classical Image Super-Resolution (middle size)
# (setting1: when model is trained on DIV2K and with training_patch_size=48)
python tools/train.py configs/swinir/swinir_x2s48w8d6e180_8xb4-lr2e-4-500k_div2k.py
python tools/train.py configs/swinir/swinir_x3s48w8d6e180_8xb4-lr2e-4-500k_div2k.py
python tools/train.py configs/swinir/swinir_x4s48w8d6e180_8xb4-lr2e-4-500k_div2k.py
# (setting2: when model is trained on DIV2K+Flickr2K and with training_patch_size=64)
python tools/train.py configs/swinir/swinir_x2s64w8d6e180_8xb4-lr2e-4-500k_df2k.py
python tools/train.py configs/swinir/swinir_x3s64w8d6e180_8xb4-lr2e-4-500k_df2k.py
python tools/train.py configs/swinir/swinir_x4s64w8d6e180_8xb4-lr2e-4-500k_df2k.py
# 002 Lightweight Image Super-Resolution (small size)
python tools/train.py configs/swinir/swinir_x2s64w8d4e60_8xb4-lr2e-4-500k_div2k.py
python tools/train.py configs/swinir/swinir_x3s64w8d4e60_8xb4-lr2e-4-500k_div2k.py
python tools/train.py configs/swinir/swinir_x4s64w8d4e60_8xb4-lr2e-4-500k_div2k.py
# 003 Real-World Image Super-Resolution
python tools/train.py configs/swinir/swinir_gan-x2s64w8d6e180_8xb4-lr1e-4-600k_df2k-ost.py
python tools/train.py configs/swinir/swinir_psnr-x2s64w8d6e180_8xb4-lr1e-4-600k_df2k-ost.py
python tools/train.py configs/swinir/swinir_gan-x4s64w8d6e180_8xb4-lr1e-4-600k_df2k-ost.py
python tools/train.py configs/swinir/swinir_psnr-x4s64w8d6e180_8xb4-lr1e-4-600k_df2k-ost.py
python tools/train.py configs/swinir/swinir_gan-x4s64w8d9e240_8xb4-lr1e-4-600k_df2k-ost.py
python tools/train.py configs/swinir/swinir_psnr-x4s64w8d9e240_8xb4-lr1e-4-600k_df2k-ost.py
# 004 Grayscale Image Deoising (middle size)
python tools/train.py configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN15.py
python tools/train.py configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN25.py
python tools/train.py configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN50.py
# 005 Color Image Deoising (middle size)
python tools/train.py configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-colorDN15.py
python tools/train.py configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-colorDN25.py
python tools/train.py configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-colorDN50.py
# 006 JPEG Compression Artifact Reduction (middle size, using window_size=7 because JPEG encoding uses 8x8 blocks)
# grayscale
python tools/train.py configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR10.py
python tools/train.py configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR20.py
python tools/train.py configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR30.py
python tools/train.py configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR40.py
# color
python tools/train.py configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR10.py
python tools/train.py configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR20.py
python tools/train.py configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR30.py
python tools/train.py configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR40.py
# multi-gpu train
# 001 Classical Image Super-Resolution (middle size)
# (setting1: when model is trained on DIV2K and with training_patch_size=48)
./tools/dist_train.sh configs/swinir/swinir_x2s48w8d6e180_8xb4-lr2e-4-500k_div2k.py 8
./tools/dist_train.sh configs/swinir/swinir_x3s48w8d6e180_8xb4-lr2e-4-500k_div2k.py 8
./tools/dist_train.sh configs/swinir/swinir_x4s48w8d6e180_8xb4-lr2e-4-500k_div2k.py 8
# (setting2: when model is trained on DIV2K+Flickr2K and with training_patch_size=64)
./tools/dist_train.sh configs/swinir/swinir_x2s64w8d6e180_8xb4-lr2e-4-500k_df2k.py 8
./tools/dist_train.sh configs/swinir/swinir_x3s64w8d6e180_8xb4-lr2e-4-500k_df2k.py 8
./tools/dist_train.sh configs/swinir/swinir_x4s64w8d6e180_8xb4-lr2e-4-500k_df2k.py 8
# 002 Lightweight Image Super-Resolution (small size)
./tools/dist_train.sh configs/swinir/swinir_x2s64w8d4e60_8xb4-lr2e-4-500k_div2k.py 8
./tools/dist_train.sh configs/swinir/swinir_x3s64w8d4e60_8xb4-lr2e-4-500k_div2k.py 8
./tools/dist_train.sh configs/swinir/swinir_x4s64w8d4e60_8xb4-lr2e-4-500k_div2k.py 8
# 003 Real-World Image Super-Resolution
./tools/dist_train.sh configs/swinir/swinir_gan-x2s64w8d6e180_8xb4-lr1e-4-600k_df2k-ost.py 8
./tools/dist_train.sh configs/swinir/swinir_psnr-x2s64w8d6e180_8xb4-lr1e-4-600k_df2k-ost.py 8
./tools/dist_train.sh configs/swinir/swinir_gan-x4s64w8d6e180_8xb4-lr1e-4-600k_df2k-ost.py 8
./tools/dist_train.sh configs/swinir/swinir_psnr-x4s64w8d6e180_8xb4-lr1e-4-600k_df2k-ost.py 8
./tools/dist_train.sh configs/swinir/swinir_gan-x4s64w8d9e240_8xb4-lr1e-4-600k_df2k-ost.py 8
./tools/dist_train.sh configs/swinir/swinir_psnr-x4s64w8d9e240_8xb4-lr1e-4-600k_df2k-ost.py 8
# 004 Grayscale Image Deoising (middle size)
./tools/dist_train.sh configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN15.py 8
./tools/dist_train.sh configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN25.py 8
./tools/dist_train.sh configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN50.py 8
# 005 Color Image Deoising (middle size)
./tools/dist_train.sh configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-colorDN15.py 8
./tools/dist_train.sh configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-colorDN25.py 8
./tools/dist_train.sh configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-colorDN50.py 8
# 006 JPEG Compression Artifact Reduction (middle size, using window_size=7 because JPEG encoding uses 8x8 blocks)
# grayscale
./tools/dist_train.sh configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR10.py 8
./tools/dist_train.sh configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR20.py 8
./tools/dist_train.sh configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR30.py 8
./tools/dist_train.sh configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR40.py 8
# color
./tools/dist_train.sh configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR10.py 8
./tools/dist_train.sh configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR20.py 8
./tools/dist_train.sh configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR30.py 8
./tools/dist_train.sh configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR40.py 8
For more details, you can refer to Train a model part in train_test.md.
Test
Test Instructions
You can use the following commands to test a model with cpu or single/multiple GPUs.
# cpu test
# 001 Classical Image Super-Resolution (middle size)
# (setting1: when model is trained on DIV2K and with training_patch_size=48)
CUDA_VISIBLE_DEVICES=-1 python tools/test.py configs/swinir/swinir_x2s48w8d6e180_8xb4-lr2e-4-500k_div2k.py https://download.openmmlab.com/mmediting/swinir/swinir_x2s48w8d6e180_8xb4-lr2e-4-500k_div2k-ed2d419e.pth
CUDA_VISIBLE_DEVICES=-1 python tools/test.py configs/swinir/swinir_x3s48w8d6e180_8xb4-lr2e-4-500k_div2k.py https://download.openmmlab.com/mmediting/swinir/swinir_x3s48w8d6e180_8xb4-lr2e-4-500k_div2k-926950f1.pth
CUDA_VISIBLE_DEVICES=-1 python tools/test.py configs/swinir/swinir_x4s48w8d6e180_8xb4-lr2e-4-500k_div2k.py https://download.openmmlab.com/mmediting/swinir/swinir_x4s48w8d6e180_8xb4-lr2e-4-500k_div2k-88e4903d.pth
# (setting2: when model is trained on DIV2K+Flickr2K and with training_patch_size=64)
CUDA_VISIBLE_DEVICES=-1 python tools/test.py configs/swinir/swinir_x2s64w8d6e180_8xb4-lr2e-4-500k_df2k.py https://download.openmmlab.com/mmediting/swinir/swinir_x2s64w8d6e180_8xb4-lr2e-4-500k_df2k-69e15fb6.pth
CUDA_VISIBLE_DEVICES=-1 python tools/test.py configs/swinir/swinir_x3s64w8d6e180_8xb4-lr2e-4-500k_df2k.py https://download.openmmlab.com/mmediting/swinir/swinir_x3s64w8d6e180_8xb4-lr2e-4-500k_df2k-d6982f7b.pth
CUDA_VISIBLE_DEVICES=-1 python tools/test.py configs/swinir/swinir_x4s64w8d6e180_8xb4-lr2e-4-500k_df2k.py https://download.openmmlab.com/mmediting/swinir/swinir_x4s64w8d6e180_8xb4-lr2e-4-500k_df2k-0502d775.pth
# 002 Lightweight Image Super-Resolution (small size)
CUDA_VISIBLE_DEVICES=-1 python tools/test.py configs/swinir/swinir_x2s64w8d4e60_8xb4-lr2e-4-500k_div2k.py https://download.openmmlab.com/mmediting/swinir/swinir_x2s64w8d4e60_8xb4-lr2e-4-500k_div2k-131d3f64.pth
CUDA_VISIBLE_DEVICES=-1 python tools/test.py configs/swinir/swinir_x3s64w8d4e60_8xb4-lr2e-4-500k_div2k.py https://download.openmmlab.com/mmediting/swinir/swinir_x3s64w8d4e60_8xb4-lr2e-4-500k_div2k-309cb239.pth
CUDA_VISIBLE_DEVICES=-1 python tools/test.py configs/swinir/swinir_x4s64w8d4e60_8xb4-lr2e-4-500k_div2k.py https://download.openmmlab.com/mmediting/swinir/swinir_x4s64w8d4e60_8xb4-lr2e-4-500k_div2k-d6622d03.pth
# 003 Real-World Image Super-Resolution
CUDA_VISIBLE_DEVICES=-1 python tools/test.py configs/swinir/swinir_gan-x2s64w8d6e180_8xb4-lr1e-4-600k_df2k-ost.py https://download.openmmlab.com/mmediting/swinir/swinir_gan-x2s64w8d6e180_8xb4-lr1e-4-600k_df2k-os-c6425057.pth
CUDA_VISIBLE_DEVICES=-1 python tools/test.py configs/swinir/swinir_psnr-x2s64w8d6e180_8xb4-lr1e-4-600k_df2k-ost.py https://download.openmmlab.com/mmediting/swinir/swinir_psnr-x2s64w8d6e180_8xb4-lr1e-4-600k_df2k-os-6f0c425f.pth
CUDA_VISIBLE_DEVICES=-1 python tools/test.py configs/swinir/swinir_gan-x4s64w8d6e180_8xb4-lr1e-4-600k_df2k-ost.py https://download.openmmlab.com/mmediting/swinir/swinir_gan-x4s64w8d6e180_8xb4-lr1e-4-600k_df2k-os-36960d18.pth
CUDA_VISIBLE_DEVICES=-1 python tools/test.py configs/swinir/swinir_psnr-x4s64w8d6e180_8xb4-lr1e-4-600k_df2k-ost.py https://download.openmmlab.com/mmediting/swinir/swinir_psnr-x4s64w8d6e180_8xb4-lr1e-4-600k_df2k-os-a016a72f.pth
CUDA_VISIBLE_DEVICES=-1 python tools/test.py configs/swinir/swinir_gan-x4s64w8d9e240_8xb4-lr1e-4-600k_df2k-ost.py https://download.openmmlab.com/mmediting/swinir/swinir_gan-x4s64w8d9e240_8xb4-lr1e-4-600k_df2k-os-9f1599b5.pth
CUDA_VISIBLE_DEVICES=-1 python tools/test.py configs/swinir/swinir_psnr-x4s64w8d9e240_8xb4-lr1e-4-600k_df2k-ost.py https://download.openmmlab.com/mmediting/swinir/swinir_psnr-x4s64w8d9e240_8xb4-lr1e-4-600k_df2k-os-25f1722a.pth
# 004 Grayscale Image Deoising (middle size)
CUDA_VISIBLE_DEVICES=-1 python tools/test.py configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN15.py https://download.openmmlab.com/mmediting/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN15-6782691b.pth
CUDA_VISIBLE_DEVICES=-1 python tools/test.py configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN25.py https://download.openmmlab.com/mmediting/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN25-d0d8d4da.pth
CUDA_VISIBLE_DEVICES=-1 python tools/test.py configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN50.py https://download.openmmlab.com/mmediting/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN50-54c9968a.pth
# 005 Color Image Deoising (middle size)
CUDA_VISIBLE_DEVICES=-1 python tools/test.py configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-colorDN15.py https://download.openmmlab.com/mmediting/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-colorDN15-c74a2cee.pth
CUDA_VISIBLE_DEVICES=-1 python tools/test.py configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-colorDN25.py https://download.openmmlab.com/mmediting/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-colorDN25-df2b1c0c.pth
CUDA_VISIBLE_DEVICES=-1 python tools/test.py configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-colorDN50.py https://download.openmmlab.com/mmediting/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-colorDN50-e369874c.pth
# 006 JPEG Compression Artifact Reduction (middle size, using window_size=7 because JPEG encoding usesx8 blocks)
# grayscale
CUDA_VISIBLE_DEVICES=-1 python tools/test.py configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR10.py https://download.openmmlab.com/mmediting/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR10-da93c8e9.pth
CUDA_VISIBLE_DEVICES=-1 python tools/test.py configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR20.py https://download.openmmlab.com/mmediting/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR20-d47367b1.pth
CUDA_VISIBLE_DEVICES=-1 python tools/test.py configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR30.py https://download.openmmlab.com/mmediting/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR30-52c083cf.pth
CUDA_VISIBLE_DEVICES=-1 python tools/test.py configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR40.py https://download.openmmlab.com/mmediting/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR40-803e8d9b.pth
# color
CUDA_VISIBLE_DEVICES=-1 python tools/test.py configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR10.py https://download.openmmlab.com/mmediting/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR10-09aafadc.pth
CUDA_VISIBLE_DEVICES=-1 python tools/test.py configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR20.py https://download.openmmlab.com/mmediting/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR20-b8a42b5e.pth
CUDA_VISIBLE_DEVICES=-1 python tools/test.py configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR30.py https://download.openmmlab.com/mmediting/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR30-e9fe6859.pth
CUDA_VISIBLE_DEVICES=-1 python tools/test.py configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR40.py https://download.openmmlab.com/mmediting/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR40-5b77a6e6.pth
# single-gpu test
# 001 Classical Image Super-Resolution (middle size)
# (setting1: when model is trained on DIV2K and with training_patch_size=48)
python tools/test.py configs/swinir/swinir_x2s48w8d6e180_8xb4-lr2e-4-500k_div2k.py https://download.openmmlab.com/mmediting/swinir/swinir_x2s48w8d6e180_8xb4-lr2e-4-500k_div2k-ed2d419e.pth
python tools/test.py configs/swinir/swinir_x3s48w8d6e180_8xb4-lr2e-4-500k_div2k.py https://download.openmmlab.com/mmediting/swinir/swinir_x3s48w8d6e180_8xb4-lr2e-4-500k_div2k-926950f1.pth
python tools/test.py configs/swinir/swinir_x4s48w8d6e180_8xb4-lr2e-4-500k_div2k.py https://download.openmmlab.com/mmediting/swinir/swinir_x4s48w8d6e180_8xb4-lr2e-4-500k_div2k-88e4903d.pth
# (setting2: when model is trained on DIV2K+Flickr2K and with training_patch_size=64)
python tools/test.py configs/swinir/swinir_x2s64w8d6e180_8xb4-lr2e-4-500k_df2k.py https://download.openmmlab.com/mmediting/swinir/swinir_x2s64w8d6e180_8xb4-lr2e-4-500k_df2k-69e15fb6.pth
python tools/test.py configs/swinir/swinir_x3s64w8d6e180_8xb4-lr2e-4-500k_df2k.py https://download.openmmlab.com/mmediting/swinir/swinir_x3s64w8d6e180_8xb4-lr2e-4-500k_df2k-d6982f7b.pth
python tools/test.py configs/swinir/swinir_x4s64w8d6e180_8xb4-lr2e-4-500k_df2k.py https://download.openmmlab.com/mmediting/swinir/swinir_x4s64w8d6e180_8xb4-lr2e-4-500k_df2k-0502d775.pth
# 002 Lightweight Image Super-Resolution (small size)
python tools/test.py configs/swinir/swinir_x2s64w8d4e60_8xb4-lr2e-4-500k_div2k.py https://download.openmmlab.com/mmediting/swinir/swinir_x2s64w8d4e60_8xb4-lr2e-4-500k_div2k-131d3f64.pth
python tools/test.py configs/swinir/swinir_x3s64w8d4e60_8xb4-lr2e-4-500k_div2k.py https://download.openmmlab.com/mmediting/swinir/swinir_x3s64w8d4e60_8xb4-lr2e-4-500k_div2k-309cb239.pth
python tools/test.py configs/swinir/swinir_x4s64w8d4e60_8xb4-lr2e-4-500k_div2k.py https://download.openmmlab.com/mmediting/swinir/swinir_x4s64w8d4e60_8xb4-lr2e-4-500k_div2k-d6622d03.pth
# 003 Real-World Image Super-Resolution
python tools/test.py configs/swinir/swinir_gan-x2s64w8d6e180_8xb4-lr1e-4-600k_df2k-ost.py https://download.openmmlab.com/mmediting/swinir/swinir_gan-x2s64w8d6e180_8xb4-lr1e-4-600k_df2k-os-c6425057.pth
python tools/test.py configs/swinir/swinir_psnr-x2s64w8d6e180_8xb4-lr1e-4-600k_df2k-ost.py https://download.openmmlab.com/mmediting/swinir/swinir_psnr-x2s64w8d6e180_8xb4-lr1e-4-600k_df2k-os-6f0c425f.pth
python tools/test.py configs/swinir/swinir_gan-x4s64w8d6e180_8xb4-lr1e-4-600k_df2k-ost.py https://download.openmmlab.com/mmediting/swinir/swinir_gan-x4s64w8d6e180_8xb4-lr1e-4-600k_df2k-os-36960d18.pth
python tools/test.py configs/swinir/swinir_psnr-x4s64w8d6e180_8xb4-lr1e-4-600k_df2k-ost.py https://download.openmmlab.com/mmediting/swinir/swinir_psnr-x4s64w8d6e180_8xb4-lr1e-4-600k_df2k-os-a016a72f.pth
python tools/test.py configs/swinir/swinir_gan-x4s64w8d9e240_8xb4-lr1e-4-600k_df2k-ost.py https://download.openmmlab.com/mmediting/swinir/swinir_gan-x4s64w8d9e240_8xb4-lr1e-4-600k_df2k-os-9f1599b5.pth
python tools/test.py configs/swinir/swinir_psnr-x4s64w8d9e240_8xb4-lr1e-4-600k_df2k-ost.py https://download.openmmlab.com/mmediting/swinir/swinir_psnr-x4s64w8d9e240_8xb4-lr1e-4-600k_df2k-os-25f1722a.pth
# 004 Grayscale Image Deoising (middle size)
python tools/test.py configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN15.py https://download.openmmlab.com/mmediting/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN15-6782691b.pth
python tools/test.py configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN25.py https://download.openmmlab.com/mmediting/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN25-d0d8d4da.pth
python tools/test.py configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN50.py https://download.openmmlab.com/mmediting/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN50-54c9968a.pth
# 005 Color Image Deoising (middle size)
python tools/test.py configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-colorDN15.py https://download.openmmlab.com/mmediting/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-colorDN15-c74a2cee.pth
python tools/test.py configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-colorDN25.py https://download.openmmlab.com/mmediting/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-colorDN25-df2b1c0c.pth
python tools/test.py configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-colorDN50.py https://download.openmmlab.com/mmediting/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-colorDN50-e369874c.pth
# 006 JPEG Compression Artifact Reduction (middle size, using window_size=7 because JPEG encoding usesx8 blocks)
# grayscale
python tools/test.py configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR10.py https://download.openmmlab.com/mmediting/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR10-da93c8e9.pth
python tools/test.py configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR20.py https://download.openmmlab.com/mmediting/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR20-d47367b1.pth
python tools/test.py configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR30.py https://download.openmmlab.com/mmediting/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR30-52c083cf.pth
python tools/test.py configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR40.py https://download.openmmlab.com/mmediting/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR40-803e8d9b.pth
# color
python tools/test.py configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR10.py https://download.openmmlab.com/mmediting/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR10-09aafadc.pth
python tools/test.py configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR20.py https://download.openmmlab.com/mmediting/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR20-b8a42b5e.pth
python tools/test.py configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR30.py https://download.openmmlab.com/mmediting/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR30-e9fe6859.pth
python tools/test.py configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR40.py https://download.openmmlab.com/mmediting/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR40-5b77a6e6.pth
# multi-gpu test
# 001 Classical Image Super-Resolution (middle size)
# (setting1: when model is trained on DIV2K and with training_patch_size=48)
./tools/dist_test.sh configs/swinir/swinir_x2s48w8d6e180_8xb4-lr2e-4-500k_div2k.py https://download.openmmlab.com/mmediting/swinir/swinir_x2s48w8d6e180_8xb4-lr2e-4-500k_div2k-ed2d419e.pth
./tools/dist_test.sh configs/swinir/swinir_x3s48w8d6e180_8xb4-lr2e-4-500k_div2k.py https://download.openmmlab.com/mmediting/swinir/swinir_x3s48w8d6e180_8xb4-lr2e-4-500k_div2k-926950f1.pth
./tools/dist_test.sh configs/swinir/swinir_x4s48w8d6e180_8xb4-lr2e-4-500k_div2k.py https://download.openmmlab.com/mmediting/swinir/swinir_x4s48w8d6e180_8xb4-lr2e-4-500k_div2k-88e4903d.pth
# (setting2: when model is trained on DIV2K+Flickr2K and with training_patch_size=64)
./tools/dist_test.sh configs/swinir/swinir_x2s64w8d6e180_8xb4-lr2e-4-500k_df2k.py https://download.openmmlab.com/mmediting/swinir/swinir_x2s64w8d6e180_8xb4-lr2e-4-500k_df2k-69e15fb6.pth
./tools/dist_test.sh configs/swinir/swinir_x3s64w8d6e180_8xb4-lr2e-4-500k_df2k.py https://download.openmmlab.com/mmediting/swinir/swinir_x3s64w8d6e180_8xb4-lr2e-4-500k_df2k-d6982f7b.pth
./tools/dist_test.sh configs/swinir/swinir_x4s64w8d6e180_8xb4-lr2e-4-500k_df2k.py https://download.openmmlab.com/mmediting/swinir/swinir_x4s64w8d6e180_8xb4-lr2e-4-500k_df2k-0502d775.pth
# 002 Lightweight Image Super-Resolution (small size)
./tools/dist_test.sh configs/swinir/swinir_x2s64w8d4e60_8xb4-lr2e-4-500k_div2k.py https://download.openmmlab.com/mmediting/swinir/swinir_x2s64w8d4e60_8xb4-lr2e-4-500k_div2k-131d3f64.pth
./tools/dist_test.sh configs/swinir/swinir_x3s64w8d4e60_8xb4-lr2e-4-500k_div2k.py https://download.openmmlab.com/mmediting/swinir/swinir_x3s64w8d4e60_8xb4-lr2e-4-500k_div2k-309cb239.pth
./tools/dist_test.sh configs/swinir/swinir_x4s64w8d4e60_8xb4-lr2e-4-500k_div2k.py https://download.openmmlab.com/mmediting/swinir/swinir_x4s64w8d4e60_8xb4-lr2e-4-500k_div2k-d6622d03.pth
# 003 Real-World Image Super-Resolution
./tools/dist_test.sh configs/swinir/swinir_gan-x2s64w8d6e180_8xb4-lr1e-4-600k_df2k-ost.py https://download.openmmlab.com/mmediting/swinir/swinir_gan-x2s64w8d6e180_8xb4-lr1e-4-600k_df2k-os-c6425057.pth
./tools/dist_test.sh configs/swinir/swinir_psnr-x2s64w8d6e180_8xb4-lr1e-4-600k_df2k-ost.py https://download.openmmlab.com/mmediting/swinir/swinir_psnr-x2s64w8d6e180_8xb4-lr1e-4-600k_df2k-os-6f0c425f.pth
./tools/dist_test.sh configs/swinir/swinir_gan-x4s64w8d6e180_8xb4-lr1e-4-600k_df2k-ost.py https://download.openmmlab.com/mmediting/swinir/swinir_gan-x4s64w8d6e180_8xb4-lr1e-4-600k_df2k-os-36960d18.pth
./tools/dist_test.sh configs/swinir/swinir_psnr-x4s64w8d6e180_8xb4-lr1e-4-600k_df2k-ost.py https://download.openmmlab.com/mmediting/swinir/swinir_psnr-x4s64w8d6e180_8xb4-lr1e-4-600k_df2k-os-a016a72f.pth
./tools/dist_test.sh configs/swinir/swinir_gan-x4s64w8d9e240_8xb4-lr1e-4-600k_df2k-ost.py https://download.openmmlab.com/mmediting/swinir/swinir_gan-x4s64w8d9e240_8xb4-lr1e-4-600k_df2k-os-9f1599b5.pth
./tools/dist_test.sh configs/swinir/swinir_psnr-x4s64w8d9e240_8xb4-lr1e-4-600k_df2k-ost.py https://download.openmmlab.com/mmediting/swinir/swinir_psnr-x4s64w8d9e240_8xb4-lr1e-4-600k_df2k-os-25f1722a.pth
# 004 Grayscale Image Deoising (middle size)
./tools/dist_test.sh configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN15.py https://download.openmmlab.com/mmediting/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN15-6782691b.pth
./tools/dist_test.sh configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN25.py https://download.openmmlab.com/mmediting/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN25-d0d8d4da.pth
./tools/dist_test.sh configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN50.py https://download.openmmlab.com/mmediting/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN50-54c9968a.pth
# 005 Color Image Deoising (middle size)
./tools/dist_test.sh configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-colorDN15.py https://download.openmmlab.com/mmediting/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-colorDN15-c74a2cee.pth
./tools/dist_test.sh configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-colorDN25.py https://download.openmmlab.com/mmediting/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-colorDN25-df2b1c0c.pth
./tools/dist_test.sh configs/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-colorDN50.py https://download.openmmlab.com/mmediting/swinir/swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-colorDN50-e369874c.pth
# 006 JPEG Compression Artifact Reduction (middle size, using window_size=7 because JPEG encoding uses 8x8 blocks)
# grayscale
./tools/dist_test.sh configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR10.py https://download.openmmlab.com/mmediting/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR10-da93c8e9.pth
./tools/dist_test.sh configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR20.py https://download.openmmlab.com/mmediting/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR20-d47367b1.pth
./tools/dist_test.sh configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR30.py https://download.openmmlab.com/mmediting/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR30-52c083cf.pth
./tools/dist_test.sh configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR40.py https://download.openmmlab.com/mmediting/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-grayCAR40-803e8d9b.pth
# color
./tools/dist_test.sh configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR10.py https://download.openmmlab.com/mmediting/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR10-09aafadc.pth
./tools/dist_test.sh configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR20.py https://download.openmmlab.com/mmediting/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR20-b8a42b5e.pth
./tools/dist_test.sh configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR30.py https://download.openmmlab.com/mmediting/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR30-e9fe6859.pth
./tools/dist_test.sh configs/swinir/swinir_s126w7d6e180_8xb1-lr2e-4-1600k_dfwb-colorCAR40.py https://download.openmmlab.com/mmediting/swinir/
For more details, you can refer to Test a pre-trained model part in train_test.md.
@inproceedings{liang2021swinir,
title={Swinir: Image restoration using swin transformer},
author={Liang, Jingyun and Cao, Jiezhang and Sun, Guolei and Zhang, Kai and Van Gool, Luc and Timofte, Radu},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={1833--1844},
year={2021}
}