-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
266 lines (223 loc) · 11.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import torch
import torch.nn.functional as F
from torch.autograd import Variable
from PVT_Model.pvtmodel import PvtNet
import numpy as np
import pdb, os, argparse
from datetime import datetime
from data import get_loader, test_dataset
from utils import clip_gradient, adjust_lr
from pamr import BinaryPamr
import os
import logging
from scipy import misc
from fast_slic import Slic
import smoothness
from tools import *
import imageio
from lscloss import *
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
parser = argparse.ArgumentParser()
parser.add_argument('--epoch', type=int, default=300, help='epoch number')
parser.add_argument('--lr', type=float, default=5e-5, help='learning rate')
parser.add_argument('--batchsize', type=int, default=16, help='training batch size')
parser.add_argument('--trainsize', type=int, default=256, help='training dataset size')
parser.add_argument('--clip', type=float, default=0.5, help='gradient clipping margin')
parser.add_argument('--decay_rate', type=float, default=0.1, help='decay rate of learning rate')
parser.add_argument('--decay_epoch', type=int, default=200, help='every n epochs decay learning rate')
parser.add_argument('--sm_loss_weight', type=float, default=0.3, help='weight for smoothness loss')
parser.add_argument('--edge_loss_weight', type=float, default=1.0, help='weight for edge loss')
parser.add_argument('--save_path', type=str, default='', help='the path to save models and logs')
parser.add_argument('--load', type=str, default='', help='train from checkpoints')
opt = parser.parse_args()
print('Learning Rate: {}'.format(opt.lr))
# build models
model = PvtNet(opt)
model.encoder_rgb.load_state_dict(torch.load(""), strict=True)
model.encoder_depth.load_state_dict(torch.load(""), strict=True)
# if(opt.load is not None):
# model.pvtb2.init_weights(opt.load)
model.cuda()
params = model.parameters()
optimizer = torch.optim.Adam(params, opt.lr)
image_root = ''
depth_root = ''
gt_root = ''
mask_root = ''
grayimg_root = ''
edge_root = ''
test_image_root = ''
test_gt_root =''
test_depth_root =''
train_loader = get_loader(image_root, depth_root, gt_root, mask_root, grayimg_root, edge_root, batchsize=opt.batchsize, trainsize=opt.trainsize)
test_loader = test_dataset(test_image_root, test_gt_root, test_depth_root, opt.trainsize)
total_step = len(train_loader)
CE = torch.nn.BCELoss()
smooth_loss = smoothness.smoothness_loss(size_average=True)
best_mae = 1
best_epoch = 0
loss_lsc = LocalSaliencyCoherence().cuda()
loss_lsc_kernels_desc_defaults = [{"weight": 1, "xy": 6, "rgb": 0.1}]
loss_lsc_radius = 5
save_path = opt.save_path
logging.basicConfig(filename=save_path + 'log.log', format='[%(asctime)s-%(filename)s-%(levelname)s:%(message)s]',
level=logging.INFO, filemode='a', datefmt='%Y-%m-%d %I:%M:%S %p')
logging.info("scribbleNet-Train")
logging.info("Config")
logging.info(
'epoch:{};lr:{};batchsize:{};trainsize:{};clip:{};decay_rate:{};load:{};save_path:{};decay_epoch:{}'.format(
opt.epoch, opt.lr, opt.batchsize, opt.trainsize, opt.clip, opt.decay_rate, opt.load, save_path,
opt.decay_epoch))
def structure_loss(pred, mask):
weit = 1+5*torch.abs(F.avg_pool2d(mask, kernel_size=31, stride=1, padding=15)-mask)
wbce = F.binary_cross_entropy_with_logits(pred, mask, reduce='none')
wbce = (weit*wbce).sum(dim=(2, 3))/weit.sum(dim=(2, 3))
pred = torch.sigmoid(pred)
inter = ((pred*mask)*weit).sum(dim=(2,3))
union = ((pred+mask)*weit).sum(dim=(2,3))
wiou = 1-(inter+1)/(union-inter+1)
return (wbce+wiou).mean()
# def visualize_prediction1(pred,name):
# for kk in range(pred.shape[0]):
# pred_edge_kk = pred[kk, :, :, :]
# pred_edge_kk = pred_edge_kk.detach().cpu().numpy().squeeze()
# pred_edge_kk = (pred_edge_kk - pred_edge_kk.min()) / (pred_edge_kk.max() - pred_edge_kk.min() + 1e-8)
# pred_edge_kk *= 255.0
# pred_edge_kk = pred_edge_kk.astype(np.uint8)
# save_path = './label_gt/'
# if not os.path.exists(save_path):
# os.makedirs(save_path)
# # name = '{:02d}_sal1.png'.format(kk)
# imageio.imsave(save_path + name[kk], pred_edge_kk)
def run_pamr(img, sal):
lbl_self = BinaryPamr(img, sal.clone().detach(), binary=0.4)
return lbl_self
def train(train_loader, model, optimizer, epoch):
# global step
model.train()
loss_all = 0
epoch_step = 0
for i, pack in enumerate(train_loader, start=1):
optimizer.zero_grad()
images, depths, gts, masks, grays, edges, label_gt, label_gt_depth, name = pack
images = Variable(images)
depths = Variable(depths)
gts = Variable(gts)
masks = Variable(masks)
grays = Variable(grays)
# edges = Variable(edges)
label_gt = Variable(label_gt)
label_gt_depth = Variable(label_gt_depth)
images = images.cuda()
# depths = depths.repeat(1, 3, 1, 1, ).cuda()
depths = depths.cuda()
gts = gts.cuda()
masks = masks.cuda()
grays = grays.cuda()
# edges = edges.cuda()
label_gt = label_gt.cuda()
label_gt_depth = label_gt_depth.cuda()
img_size = images.size(2) * images.size(3) * images.size(0)
ratio = img_size / torch.sum(masks)
result_final, mask4, mask3, mask2, sal1, sal2 = model(images, depths)
# BCEloss for the 1st DF
sal1_loss = CE(sal1, label_gt)
# BCEloss for the 2nd DF
sal2_loss = CE(sal2, label_gt_depth)
# visualize_prediction1(sal1, name)
# The self-supervision term between 1st DF and 2nd DF
# Guidance loss for the final saliency decoder
lbl_tea = run_pamr(images, (sal1 + sal2) / 2)
# visualize_prediction1(lbl_tea, name)
loss_reult_final = structure_loss(torch.sigmoid(result_final), lbl_tea)
loss_reult_mask4 = structure_loss(torch.sigmoid(mask4), lbl_tea)
loss_reult_mask3 = structure_loss(torch.sigmoid(mask3), lbl_tea)
loss_reult_mask2 = structure_loss(torch.sigmoid(mask2), lbl_tea)
image_scale = F.interpolate(images, scale_factor=0.25, mode='bilinear', align_corners=True)
depth_scale = F.interpolate(depths, scale_factor=0.25, mode='bilinear', align_corners=True)
#
result_final_scale, mask4_s, mask3_s, mask2_s, sal1_s, sal2_s = model(image_scale, depth_scale)
result_out_scale = F.interpolate(torch.sigmoid(result_final), scale_factor=0.25, mode='bilinear', align_corners=True)
loss_ssc = SaliencyStructureConsistency(torch.sigmoid(result_final_scale), result_out_scale, 0.85)
images_ = F.interpolate(images, scale_factor=0.25, mode="bilinear", align_corners=True)
sample_rgb = {'rgb': images_}
#
final_prob = torch.sigmoid(result_final)
final_prob = final_prob * masks
smoothLoss_cur_final = opt.sm_loss_weight * smooth_loss(torch.sigmoid(result_final), grays)
sal_loss_final = ratio * CE(final_prob, gts * masks) + smoothLoss_cur_final
result_final_ = F.interpolate(torch.sigmoid(result_final), scale_factor=0.25, mode="bilinear", align_corners=True)
lossfinal_lsc = loss_lsc(result_final_, loss_lsc_kernels_desc_defaults, loss_lsc_radius, sample_rgb, images_.shape[2],images_.shape[3])['loss']
lossfinal = sal_loss_final + lossfinal_lsc + loss_ssc + loss_reult_final
mask4_prob = torch.sigmoid(mask4)
mask4_prob = mask4_prob * masks
smoothLoss_cur_mask4 = opt.sm_loss_weight * smooth_loss(torch.sigmoid(mask4), grays)
sal_loss_mask4 = ratio * CE(mask4_prob, gts * masks) + smoothLoss_cur_mask4
mask4_ = F.interpolate(torch.sigmoid(mask4), scale_factor=0.25, mode="bilinear", align_corners=True)
lossmask4_lsc = loss_lsc(mask4_, loss_lsc_kernels_desc_defaults, loss_lsc_radius, sample_rgb, images_.shape[2],images_.shape[3])['loss']
lossmask4 = sal_loss_mask4 + lossmask4_lsc +loss_reult_mask4
mask3_prob = torch.sigmoid(mask3)
mask3_prob = mask3_prob * masks
smoothLoss_cur_mask3 = opt.sm_loss_weight * smooth_loss(torch.sigmoid(mask3), grays)
sal_loss_mask3 = ratio * CE(mask3_prob, gts * masks) + smoothLoss_cur_mask3
mask3_ = F.interpolate(torch.sigmoid(mask3), scale_factor=0.25, mode="bilinear", align_corners=True)
lossmask3_lsc = loss_lsc(mask3_, loss_lsc_kernels_desc_defaults, loss_lsc_radius, sample_rgb, images_.shape[2],images_.shape[3])['loss']
lossmask3 = sal_loss_mask3 + lossmask3_lsc +loss_reult_mask3
mask2_prob = torch.sigmoid(mask2)
mask2_prob = mask2_prob * masks
smoothLoss_cur_mask2 = opt.sm_loss_weight * smooth_loss(torch.sigmoid(mask2), grays)
sal_loss_mask2 = ratio * CE(mask2_prob, gts * masks) + smoothLoss_cur_mask2
mask2_ = F.interpolate(torch.sigmoid(mask2), scale_factor=0.25, mode="bilinear", align_corners=True)
lossmask2_lsc = loss_lsc(mask2_, loss_lsc_kernels_desc_defaults, loss_lsc_radius, sample_rgb, images_.shape[2], images_.shape[3])['loss']
lossmask2 = sal_loss_mask2 + lossmask2_lsc +loss_reult_mask2
loss = lossfinal * 1 + lossmask2 * 0.8 + lossmask3 * 0.6 + lossmask4 * 0.4 + sal1_loss + sal2_loss
loss.backward()
clip_gradient(optimizer, opt.clip)
optimizer.step()
# if i % 10 == 0 or i == total_step:
# print('{} Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], sal1_loss: {:0.4f}, loss: {:0.4f}, sal2_loss: {:0.4f}'.
# format(datetime.now(), epoch, opt.epoch, i, total_step, loss1.data, loss.data, loss2.data))
if i % 100 == 0 or i == total_step or i == 1:
print('{} Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], Lossfinal: {:.4f}'.
format(datetime.now(), epoch, opt.epoch, i, total_step, loss.data))
logging.info('#TRAIN#:Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], Lossfinal: {:.4f}'.
format(epoch, opt.epoch, i, total_step, loss.data))
if not os.path.exists(save_path):
os.makedirs(save_path)
if epoch % 30 == 0:
torch.save(model.state_dict(), save_path + 'scribble' + '_%d' % epoch + '.pth')
def test(test_loader, model, epoch, save_path):
global best_mae, best_epoch
# 神经网络沿用batch normalization的值,并不使用drop out
model.eval()
with torch.no_grad():
mae_sum = 0
for i in range(test_loader.size):
image, gt, depth, name, img_for_post = test_loader.load_data()
gt = np.asarray(gt, np.float32)
gt /= (gt.max() + 1e-8)
image = image.cuda()
# depth = depth.repeat(1, 3, 1, 1, ).cuda()
depth = depth.cuda()
res, _, _, _ = model(image, depth)
res = F.upsample(res, size=gt.shape, mode='bilinear', align_corners=False)
res = res.sigmoid().data.cpu().numpy().squeeze()
res = (res - res.min()) / (res.max() - res.min() + 1e-8)
mae_sum += np.sum(np.abs(res - gt)) * 1.0 / (gt.shape[0] * gt.shape[1])
mae = mae_sum / test_loader.size
# writer.add_scalar('MAE', torch.tensor(mae), global_step=epoch)
print('Epoch: {} MAE: {} #### bestMAE: {} bestEpoch: {}'.format(epoch, mae, best_mae, best_epoch))
if epoch == 1:
best_mae = mae
else:
if mae < best_mae:
best_mae = mae
best_epoch = epoch
torch.save(model.state_dict(), save_path + 'scribble_epoch_best.pth')
print('best epoch:{}'.format(epoch))
logging.info('#TEST#:Epoch:{} MAE:{} bestEpoch:{} bestMAE:{}'.format(epoch, mae, best_epoch, best_mae))
print("Starting!")
for epoch in range(1, opt.epoch+1):
adjust_lr(optimizer, opt.lr, epoch, opt.decay_rate, opt.decay_epoch)
train(train_loader, model, optimizer, epoch)
test(test_loader, model, epoch, save_path)