forked from huichen/wukong
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindexer.go
382 lines (341 loc) · 11.7 KB
/
indexer.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
package core
import (
"github.com/huichen/wukong/types"
"log"
"math"
"sync"
)
// 索引器
type Indexer struct {
// 从搜索键到文档列表的反向索引
// 加了读写锁以保证读写安全
tableLock struct {
sync.RWMutex
table map[string]*KeywordIndices
}
initOptions types.IndexerInitOptions
initialized bool
// 这实际上是总文档数的一个近似
numDocuments uint64
// 所有被索引文本的总关键词数
totalTokenLength float32
// 每个文档的关键词长度
docTokenLengths map[uint64]float32
}
// 反向索引表的一行,收集了一个搜索键出现的所有文档,按照DocId从小到大排序。
type KeywordIndices struct {
// 下面的切片是否为空,取决于初始化时IndexType的值
docIds []uint64 // 全部类型都有
frequencies []float32 // IndexType == FrequenciesIndex
locations [][]int // IndexType == LocationsIndex
}
// 初始化索引器
func (indexer *Indexer) Init(options types.IndexerInitOptions) {
if indexer.initialized == true {
log.Fatal("索引器不能初始化两次")
}
indexer.initialized = true
indexer.tableLock.table = make(map[string]*KeywordIndices)
indexer.initOptions = options
indexer.docTokenLengths = make(map[uint64]float32)
}
// 向反向索引表中加入一个文档
func (indexer *Indexer) AddDocument(document *types.DocumentIndex) {
if indexer.initialized == false {
log.Fatal("索引器尚未初始化")
}
indexer.tableLock.Lock()
defer indexer.tableLock.Unlock()
// 更新文档关键词总长度
if document.TokenLength != 0 {
originalLength, found := indexer.docTokenLengths[document.DocId]
indexer.docTokenLengths[document.DocId] = float32(document.TokenLength)
if found {
indexer.totalTokenLength += document.TokenLength - originalLength
} else {
indexer.totalTokenLength += document.TokenLength
}
}
docIdIsNew := true
for _, keyword := range document.Keywords {
indices, foundKeyword := indexer.tableLock.table[keyword.Text]
if !foundKeyword {
// 如果没找到该搜索键则加入
ti := KeywordIndices{}
switch indexer.initOptions.IndexType {
case types.LocationsIndex:
ti.locations = [][]int{keyword.Starts}
case types.FrequenciesIndex:
ti.frequencies = []float32{keyword.Frequency}
}
ti.docIds = []uint64{document.DocId}
indexer.tableLock.table[keyword.Text] = &ti
continue
}
// 查找应该插入的位置
position, found := indexer.searchIndex(
indices, 0, indexer.getIndexLength(indices)-1, document.DocId)
if found {
docIdIsNew = false
// 覆盖已有的索引项
switch indexer.initOptions.IndexType {
case types.LocationsIndex:
indices.locations[position] = keyword.Starts
case types.FrequenciesIndex:
indices.frequencies[position] = keyword.Frequency
}
continue
}
// 当索引不存在时,插入新索引项
switch indexer.initOptions.IndexType {
case types.LocationsIndex:
indices.locations = append(indices.locations, []int{})
copy(indices.locations[position+1:], indices.locations[position:])
indices.locations[position] = keyword.Starts
case types.FrequenciesIndex:
indices.frequencies = append(indices.frequencies, float32(0))
copy(indices.frequencies[position+1:], indices.frequencies[position:])
indices.frequencies[position] = keyword.Frequency
}
indices.docIds = append(indices.docIds, 0)
copy(indices.docIds[position+1:], indices.docIds[position:])
indices.docIds[position] = document.DocId
}
// 更新文章总数
if docIdIsNew {
indexer.numDocuments++
}
}
// 查找包含全部搜索键(AND操作)的文档
// 当docIds不为nil时仅从docIds指定的文档中查找
func (indexer *Indexer) Lookup(
tokens []string, labels []string, docIds *map[uint64]bool) (docs []types.IndexedDocument) {
if indexer.initialized == false {
log.Fatal("索引器尚未初始化")
}
if indexer.numDocuments == 0 {
return
}
// 合并关键词和标签为搜索键
keywords := make([]string, len(tokens)+len(labels))
copy(keywords, tokens)
copy(keywords[len(tokens):], labels)
indexer.tableLock.RLock()
defer indexer.tableLock.RUnlock()
table := make([]*KeywordIndices, len(keywords))
for i, keyword := range keywords {
indices, found := indexer.tableLock.table[keyword]
if !found {
// 当反向索引表中无此搜索键时直接返回
return
} else {
// 否则加入反向表中
table[i] = indices
}
}
// 当没有找到时直接返回
if len(table) == 0 {
return
}
// 归并查找各个搜索键出现文档的交集
// 从后向前查保证先输出DocId较大文档
indexPointers := make([]int, len(table))
for iTable := 0; iTable < len(table); iTable++ {
indexPointers[iTable] = indexer.getIndexLength(table[iTable]) - 1
}
// 平均文本关键词长度,用于计算BM25
avgDocLength := indexer.totalTokenLength / float32(indexer.numDocuments)
for ; indexPointers[0] >= 0; indexPointers[0]-- {
// 以第一个搜索键出现的文档作为基准,并遍历其他搜索键搜索同一文档
baseDocId := indexer.getDocId(table[0], indexPointers[0])
if docIds != nil {
_, found := (*docIds)[baseDocId]
if !found {
continue
}
}
iTable := 1
found := true
for ; iTable < len(table); iTable++ {
// 二分法比简单的顺序归并效率高,也有更高效率的算法,
// 但顺序归并也许是更好的选择,考虑到将来需要用链表重新实现
// 以避免反向表添加新文档时的写锁。
// TODO: 进一步研究不同求交集算法的速度和可扩展性。
position, foundBaseDocId := indexer.searchIndex(table[iTable],
0, indexPointers[iTable], baseDocId)
if foundBaseDocId {
indexPointers[iTable] = position
} else {
if position == 0 {
// 该搜索键中所有的文档ID都比baseDocId大,因此已经没有
// 继续查找的必要。
return
} else {
// 继续下一indexPointers[0]的查找
indexPointers[iTable] = position - 1
found = false
break
}
}
}
if found {
indexedDoc := types.IndexedDocument{}
// 当为LocationsIndex时计算关键词紧邻距离
if indexer.initOptions.IndexType == types.LocationsIndex {
// 计算有多少关键词是带有距离信息的
numTokensWithLocations := 0
for i, t := range table[:len(tokens)] {
if len(t.locations[indexPointers[i]]) > 0 {
numTokensWithLocations++
}
}
if numTokensWithLocations != len(tokens) {
docs = append(docs, types.IndexedDocument{
DocId: baseDocId,
})
break
}
// 计算搜索键在文档中的紧邻距离
tokenLocations := make([]int, len(tokens))
tokenProximity := computeTokenProximity(
table[:len(tokens)], indexPointers, tokens, &tokenLocations)
indexedDoc.TokenProximity = int32(tokenProximity)
indexedDoc.TokenSnippetLocations = tokenLocations
// 添加TokenLocations
indexedDoc.TokenLocations = make([][]int, len(tokens))
for i, t := range table[:len(tokens)] {
indexedDoc.TokenLocations[i] = t.locations[indexPointers[i]]
}
}
// 当为LocationsIndex或者FrequenciesIndex时计算BM25
if indexer.initOptions.IndexType == types.LocationsIndex ||
indexer.initOptions.IndexType == types.FrequenciesIndex {
bm25 := float32(0)
d := indexer.docTokenLengths[baseDocId]
for i, t := range table[:len(tokens)] {
var frequency float32
if indexer.initOptions.IndexType == types.LocationsIndex {
frequency = float32(len(t.locations[indexPointers[i]]))
} else {
frequency = t.frequencies[indexPointers[i]]
}
// 计算BM25
if len(t.docIds) > 0 && frequency > 0 && indexer.initOptions.BM25Parameters != nil && avgDocLength != 0 {
// 带平滑的idf
idf := float32(math.Log2(float64(indexer.numDocuments)/float64(len(t.docIds)) + 1))
k1 := indexer.initOptions.BM25Parameters.K1
b := indexer.initOptions.BM25Parameters.B
bm25 += idf * frequency * (k1 + 1) / (frequency + k1*(1-b+b*d/avgDocLength))
}
}
indexedDoc.BM25 = float32(bm25)
}
indexedDoc.DocId = baseDocId
docs = append(docs, indexedDoc)
}
}
return
}
// 二分法查找indices中某文档的索引项
// 第一个返回参数为找到的位置或需要插入的位置
// 第二个返回参数标明是否找到
func (indexer *Indexer) searchIndex(
indices *KeywordIndices, start int, end int, docId uint64) (int, bool) {
// 特殊情况
if indexer.getIndexLength(indices) == start {
return start, false
}
if docId < indexer.getDocId(indices, start) {
return start, false
} else if docId == indexer.getDocId(indices, start) {
return start, true
}
if docId > indexer.getDocId(indices, end) {
return end + 1, false
} else if docId == indexer.getDocId(indices, end) {
return end, true
}
// 二分
var middle int
for end-start > 1 {
middle = (start + end) / 2
if docId == indexer.getDocId(indices, middle) {
return middle, true
} else if docId > indexer.getDocId(indices, middle) {
start = middle
} else {
end = middle
}
}
return end, false
}
// 计算搜索键在文本中的紧邻距离
//
// 假定第i个搜索键首字节出现在文本中的位置为P_i,长度L_i
// 紧邻距离计算公式为
//
// ArgMin(Sum(Abs(P_(i+1) - P_i - L_i)))
//
// 具体计算过程为先取定一个P_1,计算所有P_2的可能值中令Abs(P_2 - P_1 - L1)最小,
// 然后固定P2后依照同样的方法选择P3,P4,等等。遍历所有可能的P_1得到最小的紧邻距离。
//
// 选定的P_i通过tokenLocations参数传回。
func computeTokenProximity(
table []*KeywordIndices,
indexPointers []int,
tokens []string,
tokenLocations *[]int) int {
minTokenProximity := -1
currentLocations := make([]int, len(tokens))
for _, primaryLocation := range table[0].locations[indexPointers[0]] {
tokenProximity := 0
previousLocation := primaryLocation + len(tokens[0]) // P_1 + L_1
for iToken := 1; iToken < len(tokens); iToken++ {
locations := table[iToken].locations[indexPointers[iToken]]
// 寻找 P_i + L_i 后面最近的那个 P_(i+1)
for currentLocations[iToken] = 0; currentLocations[iToken] < len(locations) &&
locations[currentLocations[iToken]] < previousLocation; currentLocations[iToken]++ {
}
if currentLocations[iToken] == 0 {
// 找到的P_(i+1)是搜索键i+1出现的第一个位置
tokenProximity += locations[currentLocations[iToken]] -
previousLocation
} else if currentLocations[iToken] == len(locations) {
// 否则当搜索键i+1出现的最后一个位置仍然小于P_i + L_i
tokenProximity += previousLocation -
locations[currentLocations[iToken]-1]
currentLocations[iToken]--
} else {
rightProximity := locations[currentLocations[iToken]] - previousLocation
leftProximity := previousLocation - locations[currentLocations[iToken]-1]
if rightProximity > leftProximity {
// 左侧更接近
tokenProximity += leftProximity
currentLocations[iToken]--
} else {
// 右侧更接近
tokenProximity += rightProximity
}
}
// 更新 P_(i+1) + L_(i+1)
previousLocation = locations[currentLocations[iToken]] + len(tokens[iToken])
}
// 更新搜索键紧邻距离
if minTokenProximity < 0 || minTokenProximity > tokenProximity {
minTokenProximity = tokenProximity
(*tokenLocations)[0] = primaryLocation
for iToken := 1; iToken < len(tokens); iToken++ {
(*tokenLocations)[iToken] = table[iToken].locations[indexPointers[iToken]][currentLocations[iToken]]
}
}
}
return minTokenProximity
}
// 从KeywordIndices中得到第i个文档的DocId
func (indexer *Indexer) getDocId(ti *KeywordIndices, i int) uint64 {
return ti.docIds[i]
}
// 得到KeywordIndices中文档总数
func (indexer *Indexer) getIndexLength(ti *KeywordIndices) int {
return len(ti.docIds)
}