-
Notifications
You must be signed in to change notification settings - Fork 16
/
utils.py
290 lines (232 loc) · 12.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
from context_manager import *
import numpy as np
from typing import List, Dict
from qa_manager import *
import os
import pandas as pd
import math
import sys
def checkout_prob(text, file_path = 'prob.tsv'):
tokens, self_info = get_self_information(text)
with open(file_path, 'w') as f:
for token, info in zip(tokens, self_info):
print(token, info)
f.write(token + '\t' + str(info) + '\n')
print('Finished writing to file: ', file_path)
def read_lexical_units(article: ArxivArticle, mask_level = 'phrase'):
if mask_level == 'sent':
lexical_units = article.units[0]
assert lexical_units.unit_type == 'sent'
elif mask_level == 'phrase':
lexical_units = article.units[1]
assert lexical_units.unit_type == 'phrase'
elif mask_level == 'token':
lexical_units = article.units[2]
assert lexical_units.unit_type == 'token'
tokens = lexical_units.text[:50] + lexical_units.text[360:421]
self_info = lexical_units.self_info[:50] + lexical_units.self_info[360:421]
self_info = [x**1.2 for x in self_info]
max_score = max(self_info)
min_score = min(self_info)
mid = np.percentile(self_info, 50)
lines = []
highlighted = []
buffer = []
for token, score in zip(tokens, self_info):
normalized_score = ((score - min_score) / (max_score - min_score)) * 100
line = f"\\colorize{{{normalized_score}}}{{{token}}}"
if score > mid:
if len(buffer) > 0:
str_ = '\n'.join(buffer)
lines.append(f"\\underline{{{str_}}}")
buffer = []
highlighted.append(line)
lines.append(line)
else:
# token = f"\\sdelete{{{token}}}"
# line = f"\\colorize{{{normalized_score}}}{{{token}}}"
buffer.append(line)
return '\n'.join(lines) + '\n\n\n' + '\n'.join(highlighted)
def datasets_statistics(manager: ArxivContextManager, tokenizer):
def num_tokens(text):
return len(tokenizer(text)['input_ids'])
articles = manager.articles
num_sents = [len(article.units[0].text) for article in articles]
num_phrases = [len(article.units[1].text) for article in articles]
num_tokens = [len(article.units[2].text) for article in articles]
print('Number of articles: ', len(articles))
print('Average number of sentences: ', np.mean(num_sents))
print('Average number of phrases: ', np.mean(num_phrases))
print('Average number of tokens: ', np.mean(num_tokens))
def merge_answer(tasks: List[str], data_sources: List[str], mask_ratios: List[str], context_type,):
# read all answers objects, and merge them based on the given demands
all_ans_paths = []
for task in tasks:
for data_source in data_sources:
for mask_ratio in mask_ratios:
if data_source == 'news':
ans_path = f'/vol/research/lyc/llm_memorize/answer_{task}_{data_source}_{mask_ratio}.pkl'
elif data_source == 'arxiv':
ans_path = f'/vol/research/lyc/llm_memorize/{"arxiv_buggy/" if context_type == "Random-phrase" else ""}answer_{task}_{data_source}_{mask_ratio}.pkl'
all_ans_paths.append(ans_path)
answer_of_contexts = {}
for ans_path in all_ans_paths:
for context, answer in answer_of_contexts.items():
print(context, len(answer))
print(ans_path, '-------')
with open(ans_path, 'rb') as f:
ans = pickle.load(f)
if ans.reference_context not in answer_of_contexts:
answer_of_contexts[ans.reference_context] = []
if context_type not in answer_of_contexts:
answer_of_contexts[context_type] = []
if ans.task_name == 'qa':
refs = ans.answer_of_contexts[ans.reference_context]
answer = ans.answer_of_contexts[context_type]
for ref, ans_ in zip(refs, answer):
if ref is None or ans_ is None:
continue
assert len(ref) == len(ans_)
for r, a in zip(ref, ans_):
if isinstance(r, float) or isinstance(a, float):
continue
answer_of_contexts[context_type].append(a)
answer_of_contexts[ans.reference_context].append(r)
continue
answer = ans.answer_of_contexts[context_type]
reference = ans.answer_of_contexts[ans.reference_context]
slice_ = min(len(reference), len(answer))
answer_of_contexts[context_type].extend(answer[:slice_])
answer_of_contexts[ans.reference_context].extend(reference[:slice_])
return answer_of_contexts
def prepare_results_1(context_type):
save_path = '/vol/research/lyc/llm_memorize/results'
evaluator = Evaluator(metrics=['bleu', 'meteor', 'rouge', 'bertscore']) # 'bertscore'
# all_mask_ratios = [0.8]
# all_mask_ratios = [0.2, 0.35, 0.5, 0.65, 0.8]
all_mask_ratios = [0.35, ]
# results 1
answers = {}
# for mask_ratio in all_mask_ratios:
ans = merge_answer(tasks = ['qa', 'reconstruction', 'summarisation'], data_sources = ['news', 'arxiv'], mask_ratios = all_mask_ratios, context_type = context_type)
sip_ans = ans[context_type]
references = ans['no']
answers['all'] = evaluator.evaluate(sip_ans, references)
# random_ans = merge_answer(tasks = ['qa', 'reconstruction', 'summarisation'], data_sources = ['news', 'arxiv'], mask_ratios = [mask_ratio], context_type = 'Random-phrase')
# random_ans_ = random_ans['Random-phrase']
# references = random_ans['no']
# random_phrase[mask_ratio] = evaluator.evaluate(random_ans_, references)
sip_df = pd.DataFrame.from_dict(answers, orient='index', columns=['bleu', 'meteor', 'rouge1', 'bertscore_precision', 'rouge2', 'rougeL', 'rougeLsum', 'bertscore_recall', 'bertscore_f1'])
sip_df.to_csv(os.path.join(save_path, f'{context_type}_0.5_all.csv'))
def prepare_results_2():
save_path = '/vol/research/lyc/llm_memorize/results'
evaluator = Evaluator(metrics=['bleu', 'meteor', 'rouge', 'bertscore']) # 'bertscore'
# all_mask_ratios = [0.8]
all_mask_ratios = [0.2, 0.35, 0.5, 0.65, 0.8]
# results 2
self_info_phrase = {
'qa': {},
'summarisation': {},
'reconstruction': {}
}
for task in ['qa', 'reconstruction', 'summarisation']:
for mask_ratio in all_mask_ratios:
ans = merge_answer(tasks = [task], data_sources = ['news', 'arxiv'], mask_ratios = [mask_ratio], context_type = 'self-info-phrase')
sip_ans = ans['self-info-phrase']
references = ans['no']
self_info_phrase[task][mask_ratio] = evaluator.evaluate(sip_ans, references)
sip_df = pd.DataFrame.from_dict(self_info_phrase[task], orient='index', columns=['bleu', 'meteor', 'rouge1', 'bertscore_precision', 'rouge2', 'rougeL', 'rougeLsum', 'bertscore_recall', 'bertscore_f1'])
sip_df.to_csv(os.path.join(save_path, f'{task}_all.csv'))
def prepare_results_3(context_type):
save_path = '/vol/research/lyc/llm_memorize/results'
evaluator = Evaluator(metrics=['bleu', 'meteor', 'rouge', 'bertscore']) # 'bertscore'
# all_mask_ratios = [0.8]
# all_mask_ratios = [0.2, 0.35, 0.5, 0.65, 0.8]
all_mask_ratios = [0.35,]
all_tasks = ['qa', 'reconstruction', 'summarisation'] if context_type != 'no2-phrase' else ['qa', 'summarisation']
# results 1
answers = {}
# for mask_ratio in all_mask_ratios:
for task in all_tasks:
ans = merge_answer(tasks = [task], data_sources = ['news', 'arxiv'], mask_ratios = all_mask_ratios, context_type = context_type)
sip_ans = ans[context_type]
references = ans['no']
answers[task] = evaluator.evaluate(sip_ans, references)
# random_ans = merge_answer(tasks = ['qa', 'reconstruction', 'summarisation'], data_sources = ['news', 'arxiv'], mask_ratios = [mask_ratio], context_type = 'Random-phrase')
# random_ans_ = random_ans['Random-phrase']
# references = random_ans['no']
# random_phrase[mask_ratio] = evaluator.evaluate(random_ans_, references)
sip_df = pd.DataFrame.from_dict(answers, orient='index', columns=['bleu', 'meteor', 'rouge1', 'rouge2', 'rougeL', 'rougeLsum', 'bertscore_precision', 'bertscore_recall', 'bertscore_f1'])
sip_df.to_csv(os.path.join(save_path, f'{context_type}_task_wise.csv'))
def visualisation(dfs: Dict[str, pd.DataFrame]):
import matplotlib.pyplot as plt
random_df = pd.read_csv('results/random_phrase_all.csv', index_col=0)
sip_df = pd.read_csv('results/self_info_phrase_all.csv', index_col=0)
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(15, 4), dpi=120)
sip_df.plot(y='bleu', ax=axes[0], marker='^', label = 'SC')
random_df.plot(y='bleu', ax=axes[0], marker='+', label = 'Random')
axes[0].set_title('BLEU')
axes[0].set_xticks([0.2, 0.35, 0.5, 0.65, 0.8])
# axes[0].set_xlabel('Filtered Ratio')
sip_df.plot(y='rouge1', ax=axes[1], marker='^', label = 'SC')
random_df.plot(y='rouge1', ax=axes[1], marker='+', label = 'Random')
axes[1].set_title('ROUGE1')
axes[1].set_xticks([0.2, 0.35, 0.5, 0.65, 0.8])
# axes[1].set_ylim(0.2, 0.7)
# axes[1].set_xlabel('Filtered Ratio')
sip_df.plot(y='bertscore_f1', ax=axes[2], marker='^', label = 'SC')
random_df.plot(y='bertscore_f1', ax=axes[2], marker='+', label = 'Random')
axes[2].set_title('BERTScore')
axes[2].set_xticks([0.2, 0.35, 0.5, 0.65, 0.8])
# axes[-1].set_xlabel('Filtered Ratio')
# axes[2].set_ylim(0.5, 1)
fig.text(0.55, -0.03, 'Filter ratio', ha='center', fontsize=13)
plt.tight_layout()
def visualisation_2():
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(15, 4), dpi=120)
no_df.plot(y='bleu', ax=axes[0], marker='2', label = 'Original')
sip_df.plot(y='bleu', ax=axes[0], marker='^', label = 'Selective Context', color = 'salmon')
random_df.plot(y='bleu', ax=axes[0], marker='+', label = 'Random', color = 'grey')
axes[0].set_title('BLEU')
axes[0].set_xticks([0.2, 0.35, 0.5, 0.65, 0.8])
axes[0].set_ylim(0.02, 0.47)
no_df.plot(y='rouge1', ax=axes[1], marker='2', label = 'Original')
sip_df.plot(y='rouge1', ax=axes[1], marker='^', label = 'Selective Context', color = 'salmon')
random_df.plot(y='rouge1', ax=axes[1], marker='+', label = 'Random', color = 'grey')
axes[1].set_title('ROUGE1')
axes[1].set_xticks([0.2, 0.35, 0.5, 0.65, 0.8])
axes[1].set_ylim(0.3, 0.72)
# axes[1].set_ylim(0.2, 0.7)
# axes[1].set_xlabel('Filtered Ratio')
no_df.plot(y='bertscore_f1', ax=axes[2], marker='2', label = 'Original')
sip_df.plot(y='bertscore_f1', ax=axes[2], marker='^', label = 'Selective Context', color = 'salmon')
random_df.plot(y='bertscore_f1', ax=axes[2], marker='+', label = 'Random', color = 'grey')
axes[2].set_title('BERTScore')
axes[2].set_xticks([0.2, 0.35, 0.5, 0.65, 0.8])
axes[2].set_ylim(0.87, 0.945)
# axes[-1].set_xlabel('Filtered Ratio')
# axes[2].set_ylim(0.5, 1)
fig.text(0.52, -0.03, 'Context reduction ratio', ha='center', fontsize=14)
plt.tight_layout()
def ramdom_baseline():
from glob import glob
import pickle
for random_ans_file in glob('/vol/research/lyc/llm_memorize/arxiv_buggy/*.pkl'):
base = os.path.basename(random_ans_file)
if not os.path.exists(os.path.join('/vol/research/lyc/llm_memorize/', base)):
continue
with open(random_ans_file, 'rb') as f:
ans = pickle.load(f)
random_ans = ans.answer_of_contexts['Random-phrase']
with open(os.path.join('/vol/research/lyc/llm_memorize/', base), 'rb') as f:
ans = pickle.load(f)
ans.answer_of_contexts['Random-phrase'] = random_ans
with open(os.path.join('/vol/research/lyc/llm_memorize/', base), 'wb') as f:
pickle.dump(ans, f)
print(f"Done {base}")
if __name__ == '__main__':
context_type, = sys.argv[1:]
# prepare_results_1(context_type)
# ramdom_baseline()
prepare_results_3(context_type) # 'no2-phrase', 'self-info-phrase', 'Random-phrase'
# prepare_results_2()