forked from IBM/CLEVER-Robustness-Score
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup_imagenet.py
executable file
·498 lines (437 loc) · 21 KB
/
setup_imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
## Modified by Huan Zhang for ResNet, Inception v1, v2, v4, VGG, MobileNet, Densenet, Alexnet and NASnet
## Modified by Huan Zhang for the updated Inception-v3 model (inception_v3_2016_08_28.tar.gz)
## Modified by Nicholas Carlini to match model structure for attack code.
## Original copyright license follows.
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Simple image classification with an ImageNet Classifier.
Run image classification with an ImageNet Classifier (Inception, ResNet, AlexNet, etc) trained on ImageNet 2012 Challenge data
set.
This program creates a graph from a saved GraphDef protocol buffer,
and runs inference on an input JPEG image. It outputs human readable
strings of the top 5 predictions along with their probabilities.
Change the --image_file argument to any jpg image to compute a
classification of that image.
Please see the tutorial and website for a detailed description of how
to use this script to perform image recognition.
https://tensorflow.org/tutorials/image_recognition/
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os.path
import re
import sys
from functools import partial
import random
import tarfile
import scipy.misc
import numpy as np
from six.moves import urllib
import tensorflow as tf
import PIL
from PIL import Image
model_params = {}
"""Add a new new entry to ImageNet models
Parameters:
name: name of the new model, like "resnet"
url: URL to download the model
image_size: image size, usually 224 or 299
model_filename: model protobuf file name (.pb)
label_filename: a text file contains the mapping from class ID to human readable string
input_tensor: input tensor of the network defined by protobuf, like "input:0"
logit: logit output tensor of the network, like "resnet_v2_50/predictions/Reshape:0"
prob: probability output tensor of the network, like "resnet_v2_50/predictions/Reshape_1:0"
shape: tensor for reshaping the final output, like "resnet_v2_50/predictions/Shape:0".
Set to None if no reshape needed.
All the tensor names can be viewed and found in TensorBoard.
"""
def AddModel(name, url, model_filename, image_size, label_filename, input_tensor, logit, prob, shape):
global model_params
param = {}
param['url'] = url
param['model_filename'] = model_filename
param['size'] = image_size
param['input'] = input_tensor
param['logit'] = logit
param['prob'] = prob
param['shape'] = shape
param['label_filename'] = label_filename
param['name'] = name
model_params[name] = param
# pylint: disable=line-too-long
AddModel('resnet_v2_50', 'http://jaina.cs.ucdavis.edu/datasets/adv/imagenet/frozen_imagenet_models_v1.1.tar.gz',
'frozen_resnet_v2_50.pb', 299, 'labels.txt', 'input:0',
'resnet_v2_50/predictions/Reshape:0', 'resnet_v2_50/predictions/Reshape_1:0', 'resnet_v2_50/predictions/Shape:0')
AddModel('resnet_v2_101', 'http://jaina.cs.ucdavis.edu/datasets/adv/imagenet/frozen_imagenet_models_v1.1.tar.gz',
'frozen_resnet_v2_101.pb', 299, 'labels.txt', 'input:0',
'resnet_v2_101/predictions/Reshape:0', 'resnet_v2_101/predictions/Reshape_1:0', 'resnet_v2_101/predictions/Shape:0')
AddModel('resnet_v2_152', 'http://jaina.cs.ucdavis.edu/datasets/adv/imagenet/frozen_imagenet_models_v1.1.tar.gz',
'frozen_resnet_v2_152.pb', 299, 'labels.txt', 'input:0',
'resnet_v2_152/predictions/Reshape:0', 'resnet_v2_152/predictions/Reshape_1:0', 'resnet_v2_152/predictions/Shape:0')
AddModel('inception_v1', 'http://jaina.cs.ucdavis.edu/datasets/adv/imagenet/frozen_imagenet_models_v1.1.tar.gz',
'frozen_inception_v1.pb', 224, 'labels.txt', 'input:0',
'InceptionV1/Logits/Predictions/Reshape:0', 'InceptionV1/Logits/Predictions/Reshape_1:0', 'InceptionV1/Logits/Predictions/Shape:0')
AddModel('inception_v2', 'http://jaina.cs.ucdavis.edu/datasets/adv/imagenet/frozen_imagenet_models_v1.1.tar.gz',
'frozen_inception_v2.pb', 224, 'labels.txt', 'input:0',
'InceptionV2/Predictions/Reshape:0', 'InceptionV2/Predictions/Reshape_1:0', 'InceptionV2/Predictions/Shape:0')
AddModel('inception_v3', 'http://jaina.cs.ucdavis.edu/datasets/adv/imagenet/frozen_imagenet_models_v1.1.tar.gz',
'frozen_inception_v3.pb', 299, 'labels.txt', 'input:0',
'InceptionV3/Predictions/Reshape:0', 'InceptionV3/Predictions/Softmax:0', 'InceptionV3/Predictions/Shape:0')
AddModel('inception_v4', 'http://jaina.cs.ucdavis.edu/datasets/adv/imagenet/frozen_imagenet_models_v1.1.tar.gz',
'frozen_inception_v4.pb', 299, 'labels.txt', 'input:0',
'InceptionV4/Logits/Logits/BiasAdd:0', 'InceptionV4/Logits/Predictions:0', '')
AddModel('inception_resnet_v2', 'http://jaina.cs.ucdavis.edu/datasets/adv/imagenet/frozen_imagenet_models_v1.1.tar.gz',
'frozen_inception_resnet_v2.pb', 299, 'labels.txt', 'input:0',
'InceptionResnetV2/Logits/Logits/BiasAdd:0', 'InceptionResnetV2/Logits/Predictions:0', '')
AddModel('vgg_16', 'http://jaina.cs.ucdavis.edu/datasets/adv/imagenet/frozen_imagenet_models_v1.1.tar.gz',
'frozen_vgg_16.pb', 224, 'labels.txt', 'input:0',
'vgg_16/fc8/squeezed:0', 'vgg_16/fc8/squeezed:0', '')
AddModel('vgg_19', 'http://jaina.cs.ucdavis.edu/datasets/adv/imagenet/frozen_imagenet_models_v1.1.tar.gz',
'frozen_vgg_19.pb', 224, 'labels.txt', 'input:0',
'vgg_19/fc8/squeezed:0', 'vgg_19/fc8/squeezed:0', '')
AddModel('mobilenet_v1_025', 'http://jaina.cs.ucdavis.edu/datasets/adv/imagenet/frozen_imagenet_models_v1.1.tar.gz',
'frozen_mobilenet_v1_025.pb', 224, 'labels.txt', 'input:0',
'MobilenetV1/Predictions/Reshape:0', 'MobilenetV1/Predictions/Reshape_1:0', 'MobilenetV1/Predictions/Shape:0')
AddModel('mobilenet_v1_050', 'http://jaina.cs.ucdavis.edu/datasets/adv/imagenet/frozen_imagenet_models_v1.1.tar.gz',
'frozen_mobilenet_v1_050.pb', 224, 'labels.txt', 'input:0',
'MobilenetV1/Predictions/Reshape:0', 'MobilenetV1/Predictions/Reshape_1:0', 'MobilenetV1/Predictions/Shape:0')
AddModel('mobilenet_v1_100', 'http://jaina.cs.ucdavis.edu/datasets/adv/imagenet/frozen_imagenet_models_v1.1.tar.gz',
'frozen_mobilenet_v1_100.pb', 224, 'labels.txt', 'input:0',
'MobilenetV1/Predictions/Reshape:0', 'MobilenetV1/Predictions/Reshape_1:0', 'MobilenetV1/Predictions/Shape:0')
AddModel('nasnet_large', 'http://jaina.cs.ucdavis.edu/datasets/adv/imagenet/frozen_imagenet_models_v1.1.tar.gz',
'frozen_nasnet_large.pb', 331, 'labels.txt', 'input:0',
'final_layer/FC/BiasAdd:0', 'final_layer/predictions:0', '')
AddModel('densenet121_k32', 'http://jaina.cs.ucdavis.edu/datasets/adv/imagenet/frozen_imagenet_models_v1.1.tar.gz',
'densenet121_k32_frozen.pb', 224, 'labels.txt', 'input:0',
'densenet121/predictions/Reshape:0', 'densenet121/predictions/Reshape_1:0', 'densenet121/predictions/Shape:0')
AddModel('densenet169_k32', 'http://jaina.cs.ucdavis.edu/datasets/adv/imagenet/frozen_imagenet_models_v1.1.tar.gz',
'densenet169_k32_frozen.pb', 224, 'labels.txt', 'input:0',
'densenet169/predictions/Reshape:0', 'densenet169/predictions/Reshape_1:0', 'densenet169/predictions/Shape:0')
AddModel('densenet161_k48', 'http://jaina.cs.ucdavis.edu/datasets/adv/imagenet/frozen_imagenet_models_v1.1.tar.gz',
'densenet161_k48_frozen.pb', 224, 'labels.txt', 'input:0',
'densenet161/predictions/Reshape:0', 'densenet161/predictions/Reshape_1:0', 'densenet161/predictions/Shape:0')
AddModel('alexnet', 'http://jaina.cs.ucdavis.edu/datasets/adv/imagenet/frozen_imagenet_models_v1.1.tar.gz',
'alexnet_frozen.pb', 227, 'labels.txt', 'Placeholder:0',
'fc8/fc8:0', 'Softmax:0', '')
# pylint: enable=line-too-long
class NodeLookup(object):
"""Converts integer node ID's to human readable labels."""
def __init__(self,
label_lookup_path=None):
if not label_lookup_path:
label_lookup_path = os.path.join(
FLAGS.model_dir, 'labels.txt')
self.node_lookup = self.load(label_lookup_path)
def load(self, label_lookup_path):
"""Loads a human readable English name for each softmax node.
Args:
label_lookup_path: string UID to integer node ID.
uid_lookup_path: string UID to human-readable string.
Returns:
dict from integer node ID to human-readable string.
"""
if not tf.gfile.Exists(label_lookup_path):
tf.logging.fatal('File does not exist %s', label_lookup_path)
# Loads mapping from string UID to integer node ID.
node_id_to_name = {}
proto_as_ascii = tf.gfile.GFile(label_lookup_path).readlines()
for line in proto_as_ascii:
if line:
words = line.split(':')
target_class = int(words[0])
name = words[1]
node_id_to_name[target_class] = name
return node_id_to_name
def id_to_string(self, node_id):
if node_id not in self.node_lookup:
return ''
return self.node_lookup[node_id]
LOADED_GRAPH = None
def create_graph(model_param):
"""Creates a graph from saved GraphDef file and returns a saver."""
# Creates graph from saved graph_def.pb.
global LOADED_GRAPH
with tf.gfile.FastGFile(os.path.join(
# FLAGS.model_dir, 'classify_image_graph_def.pb'), 'rb') as f:
FLAGS.model_dir, model_param['model_filename']), 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
#for line in repr(graph_def).split("\n"):
# if "tensor_content" not in line:
# print(line)
LOADED_GRAPH = graph_def
class ImageNetModelPrediction:
def __init__(self, sess, use_softmax = False, model_name = "resnet_v2_50", softmax_tensor = None):
self.sess = sess
self.use_softmax = use_softmax
model_param = model_params[model_name]
self.output_name = model_param['prob'] if self.use_softmax else model_param['logit']
self.input_name = model_param['input']
self.shape_name = model_param['shape']
self.model_name = model_param['name']
self.image_size = model_param['size']
self.img = tf.placeholder(tf.float32, (None, self.image_size, self.image_size, 3))
if not softmax_tensor:
# no existing graph
self.softmax_tensor = tf.import_graph_def(
LOADED_GRAPH,
# sess.graph.as_graph_def(),
input_map={self.input_name: self.img},
return_elements=[self.output_name])
if 'vgg' in self.model_name and use_softmax == True:
# the pretrained VGG network output is logits, need an extra softmax
self.softmax_tensor = tf.nn.softmax(self.softmax_tensor)
else:
# use an existing graph
self.softmax_tensor = softmax_tensor
print("GraphDef Size:", self.sess.graph_def.ByteSize())
def predict(self, dat):
dat = np.squeeze(dat)
if 'vgg' in self.model_name:
# VGG uses 0 - 255 image as input
dat = (0.5 + dat) * 255.0
imagenet_mean = np.array([123.68, 116.78, 103.94], dtype=np.float32)
dat -= imagenet_mean
elif 'alexnet' in self.model_name:
if dat.ndim == 3:
dat = dat[:,:,::-1]
else:
dat = dat[:,:,:,::-1] # change RGB to BGR
dat = (0.5 + dat) * 255.0
imagenet_mean = np.array([104., 117., 124.], dtype=np.float32)
dat -= imagenet_mean
elif 'densenet' in self.model_name:
dat = (0.5 + dat) * 255.0
imagenet_mean = np.array([123.68, 116.78, 103.94], dtype=np.float32)
dat -= imagenet_mean
dat = dat * 0.017
else:
dat = dat * 2.0
if dat.ndim == 3:
scaled = dat.reshape((1,) + dat.shape)
else:
scaled = dat
# print(scaled.shape)
predictions = self.sess.run(self.softmax_tensor,
{self.img: scaled})
predictions = np.squeeze(predictions)
return predictions
# Creates node ID --> English string lookup.
node_lookup = NodeLookup()
top_k = predictions.argsort()#[-FLAGS.num_top_predictions:][::-1]
for node_id in top_k:
print('id',node_id)
human_string = node_lookup.id_to_string(node_id)
score = predictions[node_id]
print('%s (score = %.5f)' % (human_string, score))
return top_k[-1]
CREATED_GRAPH = False
class ImageNetModel:
def __init__(self, sess, use_softmax = False, model_name = "resnet_v2_50", create_prediction = True):
global CREATED_GRAPH
self.sess = sess
self.use_softmax = use_softmax
model_param = model_params[model_name]
maybe_download_and_extract(model_param)
if not CREATED_GRAPH:
create_graph(model_param)
CREATED_GRAPH = True
self.num_channels = 3
self.output_name = model_param['prob'] if self.use_softmax else model_param['logit']
self.input_name = model_param['input']
self.shape_name = model_param['shape']
self.model_name = model_param['name']
self.num_labels = 1000 if 'vgg' in self.model_name or 'densenet' in self.model_name or 'alexnet' in self.model_name else 1001
self.image_size = model_param['size']
self.use_softmax = use_softmax
if create_prediction:
self.model = ImageNetModelPrediction(sess, use_softmax, model_name)
def predict(self, img):
if 'vgg' in self.model_name:
# VGG uses 0 - 255 image as input
img = (0.5 + img) * 255.0
imagenet_mean = np.array([123.68, 116.78, 103.94], dtype=np.float32)
img -= imagenet_mean
elif 'alexnet' in self.model_name:
img = tf.reverse(img,axis=[-1])# change RGB to BGR
img = (0.5 + img) * 255.0
imagenet_mean = np.array([104., 117., 124.], dtype=np.float32)
img -= imagenet_mean
elif 'densenet' in self.model_name:
# convert to 0 - 255 image as input
img = (0.5 + img) * 255.0
imagenet_mean = np.array([123.68, 116.78, 103.94], dtype=np.float32)
img -= imagenet_mean
img = img * 0.017
else:
img = img * 2.0
if img.shape.is_fully_defined() and img.shape.as_list()[0] and self.shape_name:
# check if a shape has been specified explicitly
shape = (int(img.shape[0]), self.num_labels)
self.softmax_tensor = tf.import_graph_def(
LOADED_GRAPH,
# self.sess.graph.as_graph_def(),
input_map={self.input_name: img, self.shape_name: shape},
return_elements=[self.output_name])
if 'vgg' in self.model_name and self.use_softmax == True:
# the pretrained VGG network output is logitimport_graph_defs, need an extra softmax
self.softmax_tensor = tf.nn.softmax(self.softmax_tensor)
else:
# placeholder shape
self.softmax_tensor = tf.import_graph_def(
LOADED_GRAPH,
# self.sess.graph.as_graph_def(),
input_map={self.input_name: img},
return_elements=[self.output_name])
if 'vgg' in self.model_name and self.use_softmax == True:
# the pretrained VGG network output is logits, need an extra softmax
self.softmax_tensor = tf.nn.softmax(self.softmax_tensor)
print("GraphDef Size:", self.sess.graph_def.ByteSize())
return self.softmax_tensor[0]
def maybe_download_and_extract(model_param):
"""Download and extract model tar file."""
dest_directory = FLAGS.model_dir
if not os.path.exists(dest_directory):
os.makedirs(dest_directory)
filename = model_param['url'].split('/')[-1]
filepath = os.path.join(dest_directory, filename)
modelname = model_param['model_filename'].split('/')[-1]
modelpath = os.path.join(dest_directory, modelname)
if not os.path.exists(modelpath):
def _progress(count, block_size, total_size):
sys.stdout.write('\r>> Downloading %s %.1f%%' % (
filename, float(count * block_size) / float(total_size) * 100.0))
sys.stdout.flush()
filepath, _ = urllib.request.urlretrieve(model_param['url'], filepath, _progress)
print()
statinfo = os.stat(filepath)
print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.')
if os.path.splitext(filename)[1] != '.pb':
tarfile.open(filepath, 'r:gz').extractall(dest_directory)
def main(_):
param = model_params[FLAGS.model_name]
maybe_download_and_extract(param)
image = (FLAGS.image_file if FLAGS.image_file else
os.path.join(FLAGS.model_dir, 'cropped_panda.jpg'))
# run_inference_on_image(image)
create_graph(param)
image_size = param['size']
with tf.Session() as sess:
dat = np.array(scipy.misc.imresize(scipy.misc.imread(image),(image_size, image_size)), dtype = np.float32)
dat /= 255.0
dat -= 0.5
# print(dat)
model = ImageNetModelPrediction(sess, True, FLAGS.model_name)
predictions = model.predict(dat)
# Creates node ID --> English string lookup.
node_lookup = NodeLookup()
top_k = predictions.argsort()#[-FLAGS.num_top_predictions:][::-1]
for node_id in top_k:
score = predictions[node_id]
if 'vgg' in FLAGS.model_name or 'densenet' in FLAGS.model_name or 'alexnet' in FLAGS.model_name:
node_id += 1
print('id',node_id)
human_string = node_lookup.id_to_string(node_id)
print('%s (score = %.5f)' % (human_string, score))
def keep_aspect_ratio_transform(img, img_size):
s_0, s_1 = img.size
if s_0 < s_1:
ratio = (img_size / float(s_0))
size_1 = int((float(img.size[1]) * float(ratio)))
img = img.resize((img_size, size_1), PIL.Image.ANTIALIAS)
else:
ratio = (img_size / float(s_1))
size_0 = int((float(img.size[0]) * float(ratio)))
img = img.resize((size_0, img_size), PIL.Image.ANTIALIAS)
c_0 = img.size[0] // 2
c_1 = img.size[1] // 2
if img_size % 2 == 0:
w_left = h_top = img_size // 2
w_right = h_bottom = img_size // 2
else:
w_left = h_top = img_size // 2
w_right = h_bottom = img_size // 2 + 1
transformed_img = img.crop(
(
c_0 - w_left,
c_1 - h_top,
c_0 + w_right,
c_1 + h_bottom
)
)
return transformed_img
def readimg(ff, img_size):
f = "../imagenetdata/imgs/"+ff
# img = scipy.misc.imread(f)
# skip small images (image should be at least img_size X img_size)
# if img.shape[0] < img_size or img.shape[1] < img_size:
# return None
# img = np.array(scipy.misc.imresize(img,(img_size, img_size)),dtype=np.float32)/255.0-.5
img = Image.open(f)
transformed_img = keep_aspect_ratio_transform(img, img_size)
img = np.array(transformed_img)/255.0-.5
if img.shape != (img_size, img_size, 3):
# grayscale image
if img.shape == (img_size, img_size):
img = np.repeat(np.expand_dims(img, axis = 2), 3, axis = 2)
return [img, int(ff.split(".")[0])]
return None
return [img, int(ff.split(".")[0])]
class ImageNet:
def __init__(self, img_size, load_total_imgs = 1000):
from multiprocessing import Pool, cpu_count
pool = Pool(cpu_count())
file_list = sorted(os.listdir("../imagenetdata/imgs/"))
random.shuffle(file_list)
# for efficiency, we only load first 1000 images
# You can pass load_total_imgs to load all images
short_file_list = file_list[:load_total_imgs]
r = pool.map(partial(readimg, img_size=img_size), short_file_list)
print(short_file_list)
print("Loaded imagenet", len(short_file_list), "of", len(file_list), "images")
r = [x for x in r if x != None]
test_data, test_labels = zip(*r)
self.test_data = np.array(test_data)
self.test_labels = np.zeros((len(test_labels), 1001))
self.test_labels[np.arange(len(test_labels)), test_labels] = 1
pool.close()
pool.join()
if __name__ == '__main__':
FLAGS = tf.app.flags.FLAGS
# classify_image_graph_def.pb:
# Binary representation of the GraphDef protocol buffer.
# imagenet_synset_to_human_label_map.txt:
# Map from synset ID to a human readable string.
# imagenet_2012_challenge_label_map_proto.pbtxt:
# Text representation of a protocol buffer mapping a label to synset ID.
tf.app.flags.DEFINE_string(
'model_dir', 'tmp/imagenet',
"""Path to classify_image_graph_def.pb, """
"""imagenet_synset_to_human_label_map.txt, and """
"""imagenet_2012_challenge_label_map_proto.pbtxt.""")
tf.app.flags.DEFINE_string('image_file', '',
"""Absolute path to image file.""")
tf.app.flags.DEFINE_string('model_name', 'resnet_v2_101',
"""Absolute path to image file.""")
tf.app.flags.DEFINE_integer('num_top_predictions', 5,
"""Display this many predictions.""")
tf.app.run()
else:
# starting from TF 1.5, an parameter unkown by tf.app.flags will raise an error
# so we cannot use tf.app.flags when loading this file as a module, because the
# main program may define other options.
from argparse import Namespace
FLAGS = Namespace(model_dir="tmp/imagenet")