-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_APPLE.py
234 lines (212 loc) · 11.1 KB
/
train_APPLE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import torch
torch.autograd.set_detect_anomaly(True)
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from utils.utils import create_parser, create_dir, set_seed
from utils.data_loader import get_federated_datasets_dict
from utils.models import Net, ClientNet
from utils.losses import reg_loss, get_reg_coef
from utils.apple import init_pss, prepare_client_model
import syft as sy
hook = sy.TorchHook(torch)
import numpy as np
from collections import defaultdict
import copy
import os
import json
def train_one_round(args,
server_models,
client_models,
pss,
num_samples,
downloaded_once,
r,
criterion,
device,
central_server,
clients_pack_train):
"""
This is a sequential simulation of training APPLE.
"""
updated_server_models = []
n_clients = len(clients_pack_train)
p0 = torch.Tensor(init_pss(num_samples)[0]).to(device)
p0.requires_grad = False
for client_idx, (client, loader) in enumerate(clients_pack_train):
# prepare client model for this client
client_model = client_models[client_idx]
client_model = prepare_client_model(args, pss, downloaded_once, client_model, client_idx, server_models, central_server, r)
optimizer = optim.SGD([
{'params': client_model.conv1s.parameters()},
{'params': client_model.conv2s.parameters()},
{'params': client_model.fc1s.parameters()},
{'params': client_model.fc2s.parameters()},
{'params': client_model.ps, 'lr': args.lr_coef * (args.decay ** r)}
], lr=args.lr_net * (args.decay ** r), momentum=0.9)
# local training for one client
for epoch in range(args.num_local_epochs):
for batch_idx, (data, target) in enumerate(loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = client_model(data)
loss = criterion(output, target.long()) + reg_loss(client_model.ps, p0, coef=get_reg_coef(args, r))
loss.backward()
optimizer.step()
if (batch_idx+1) % args.log_step == 0 or (batch_idx + 1 == len(loader)):
print("******* Round: [%2d/%2d] | Client: [%3d/%3d] | Epoch [%3d/%3d] | Batch [%4d/%4d] | loss = %.8f *******" %
(r+1, args.num_rounds, client_idx+1, len(clients_pack_train),
epoch+1, args.num_local_epochs, batch_idx+1, len(loader), loss.item()))
client_model, ps = client_model.extract_learnables(client_idx)
updated_server_models.append(client_model)
pss[client_idx] = ps
del server_models
for m in updated_server_models:
m = m.to(device)
m.send(central_server)
return updated_server_models, pss, client_models
def val_with_local_model(client_models, criterion, device, client_data_pack, mode="Test"):
"""
This function computes the loss and acc for each client,
as well as for the entire dataset (sum up all clients).
"""
total_loss, total_correct, total_samples = 0, 0, 0
clients_accs, clients_losses = [], []
n_clients = len(client_models)
for client_idx in range(n_clients):
client_model = client_models[client_idx]
client, loader = client_data_pack[client_idx]
n_samples = len(loader.dataset)
total_samples += n_samples
client_correct = 0
client_loss = 0
with torch.no_grad():
for batch_idx, (data, target) in enumerate(loader):
data, target = data.to(device), target.to(device)
output = client_model(data)
loss = (criterion(output, target.long()) * data.size(0)).item() # sum up batch loss
client_loss += loss
total_loss += loss
pred = output.argmax(1, keepdim=True) # get the index of the max log-probability
correct = pred.eq(target.view_as(pred)).sum().item()
client_correct += correct
total_correct += correct
client_loss /= n_samples
clients_losses.append(client_loss)
client_acc = client_correct / n_samples
clients_accs.append(client_acc)
print("==> {:5s} set: Client [{:2d}/{:2d}], Average loss: {:.4f}, Accuracy: {:6d}/{:6d} ({:.0f}%)".format(
mode, client_idx+1, n_clients, client_loss, client_correct, n_samples, 100. * client_acc))
total_loss /= total_samples
acc = total_correct / total_samples
print("==> {:5s} set: Average loss {:.4f}, Accuracy: {}/{} ({:.0f}%)\n".format(
mode, total_loss, total_correct, total_samples, 100. * acc))
return total_loss, acc, clients_losses, clients_accs
def main():
args = create_parser()
in_channels = 1 if args.data in ["mnist", "organmnist_axial"] else 3
if (args.data == "mnist" or args.data == "cifar10"):
num_classes = 10
elif args.data == "pathmnist":
num_classes = 9
elif args.data == "organmnist_axial":
num_classes = 11
create_dir(args)
set_seed(args.seed)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# prepare datasets: {'client1': dataset1, ...}
trainsets, valsets, testsets = get_federated_datasets_dict(args, True)
# prepare client_pack: [(syft_client1, dataloader1), ...], and weights (for initial values of p's)
central_server = sy.VirtualWorker(hook, id="server")
clients_pack_train = []
clients_pack_val = []
clients_pack_test = []
num_samples = []
for client_id, trainset in trainsets.items():
if client_id.startswith("entire"):
continue
num_samples.append(len(trainset))
client = sy.VirtualWorker(hook, id=client_id)
train_dloader = DataLoader(dataset=trainset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers)
val_dloader = DataLoader(dataset=valsets[client_id], batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers)
test_dloader = DataLoader(dataset=testsets[client_id], batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers)
clients_pack_train.append((client, train_dloader))
clients_pack_val.append((client, val_dloader))
clients_pack_test.append((client, test_dloader))
# prepare model and loss
prototype_model = Net(in_channels=in_channels, num_classes=num_classes).to(device)
print()
print(prototype_model)
print()
criterion = nn.CrossEntropyLoss()
# train and test
hist = defaultdict(lambda: [])
# prepare initial model for each client
server_models = []
client_models = []
pss = init_pss(num_samples)
n_client = len(clients_pack_train)
for client_idx, (client, _) in enumerate(clients_pack_train):
# broadcast the model
m = Net(in_channels=in_channels, num_classes=num_classes).to(device).send(central_server)
server_models.append(m)
client_model = ClientNet(n_client, in_channels, num_classes, pss[client_idx]).to(device)
client_models.append(client_model)
# train and test
downloaded_once = (np.eye(n_client) == 1)
for r in range(args.num_rounds):
# train
server_models, pss, client_models = train_one_round(args,
server_models,
client_models,
pss,
num_samples,
downloaded_once,
r,
criterion,
device,
central_server,
clients_pack_train)
# val
print()
train_loss, train_acc, train_clients_losses, train_clients_accs = val_with_local_model(client_models,
criterion,
device,
clients_pack_train,
mode="Train")
val_loss, val_acc, val_clients_losses, val_clients_accs = val_with_local_model(client_models,
criterion,
device,
clients_pack_val,
mode="Val")
test_loss, test_acc, test_clients_losses, test_clients_accs = val_with_local_model(client_models,
criterion,
device,
clients_pack_test,
mode="Test")
print()
# store the result history
if r == 0:
hist["pss"].append(init_pss(num_samples))
else:
hist["pss"].append(copy.deepcopy(pss))
hist['train_losses'].append(train_loss)
hist['train_accs'].append(train_acc)
hist['val_losses'].append(val_loss)
hist['val_accs'].append(val_acc)
hist["val_clients_accs"].append(val_clients_accs)
hist["val_clients_mean_accs"].append(np.mean(val_clients_accs))
hist["val_clients_losses"].append(val_clients_losses)
hist['test_losses'].append(test_loss)
hist['test_accs'].append(test_acc)
hist["test_clients_accs"].append(test_clients_accs)
hist["test_clients_mean_accs"].append(np.mean(test_clients_accs))
hist["test_clients_losses"].append(test_clients_losses)
# save the result history
hist_result_fn = os.path.join(args.hist_dir, "%s-%s-APPLE.json" % (args.data, args.distribution))
with open(hist_result_fn, 'w') as f:
json.dump(hist, f)
print("\n==> results saved at %s." % hist_result_fn)
if __name__ == '__main__':
main()