-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
214 lines (181 loc) · 9.46 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import copy
import torch
import argparse
import os
import time
import warnings
import numpy as np
import torchvision
from flcore.trainmodel.models import *
warnings.simplefilter("ignore")
torch.manual_seed(0)
def run(args):
model_str = args.model
for i in range(args.prev, args.times):
print(f"\n============= Running time: [{i+1}th/{args.times}] =============", flush=True)
print("Creating server and clients ...")
# Generate args.model
if model_str == "cnn":
if args.dataset == "mnist" or args.dataset.startswith("organamnist"):
args.model = FedAvgCNN(in_features=1, num_classes=args.num_classes, dim=1024).to(args.device)
elif args.dataset.upper() == "CIFAR10" or args.dataset.upper() == "CIFAR100" or args.dataset.startswith("Office-home"):
args.model = FedAvgCNN(in_features=3, num_classes=args.num_classes, dim=1600).to(args.device)
else:
args.model = FedAvgCNN(in_features=3, num_classes=args.num_classes, dim=1600).to(args.device)
else:
raise NotImplementedError
# select algorithm
if args.algorithm.startswith("Local"):
from flcore.servers.serverlocal import Local
server = Local(args, i)
elif args.algorithm.startswith("FedAvg"):
from flcore.servers.serveravg import FedAvg
server = FedAvg(args, i)
elif args.algorithm.startswith("FedDyn"):
from flcore.servers.serverdyn import FedDyn
server = FedDyn(args, i)
elif args.algorithm.startswith("pFedMe"):
from flcore.servers.serverpfedme import pFedMe
server = pFedMe(args, i)
elif args.algorithm.startswith("FedFomo"):
from flcore.servers.serverfomo import FedFomo
server = FedFomo(args, i)
elif args.algorithm.startswith("APFL"):
from flcore.servers.serverapfl import APFL
server = APFL(args, i)
elif args.algorithm.startswith("FedRep"):
from flcore.servers.serverrep import FedRep
args.predictor = copy.deepcopy(args.model.fc)
args.model.fc = nn.Identity()
args.model = LocalModel(args.model, args.predictor)
server = FedRep(args, i)
elif args.algorithm.startswith("LGFedAvg"):
from flcore.servers.serverlgfedavg import LGFedAvg
args.predictor = copy.deepcopy(args.model.fc)
args.model.fc = nn.Identity()
args.model = LocalModel(args.model, args.predictor)
server = LGFedAvg(args, i)
elif args.algorithm.startswith("FedPer"):
from flcore.servers.serverper import FedPer
args.predictor = copy.deepcopy(args.model.fc)
args.model.fc = nn.Identity()
args.model = LocalModel(args.model, args.predictor)
server = FedPer(args, i)
elif args.algorithm.startswith("PerAvg"):
from flcore.servers.serverperavg import PerAvg
server = PerAvg(args, i)
elif args.algorithm.startswith("FedRoD"):
from flcore.servers.serverrod import FedRoD
args.predictor = copy.deepcopy(args.model.fc)
args.model.fc = nn.Identity()
args.model = LocalModel(args.model, args.predictor)
server = FedRoD(args, i)
elif args.algorithm.startswith("FedBABU"):
args.predictor = copy.deepcopy(args.model.fc)
args.model.fc = nn.Identity()
args.model = LocalModel(args.model, args.predictor)
from flcore.servers.serverbabu import FedBABU
server = FedBABU(args, i)
elif args.algorithm.startswith("PGFed"):
from flcore.servers.serverpgfed import PGFed
server = PGFed(args, i)
else:
raise NotImplementedError
server.train()
if args.dataset.startswith("Office-home") and args.times != 1:
import logging
m = server.domain_mean_test_accs
logging.info(f"domains means and average:\t{m[0]:.6f}\t{m[1]:.6f}\t{m[2]:.6f}\t{m[3]:.6f}\t{server.best_mean_test_acc:.6f}")
# # comment the above block and uncomment the following block for fine-tuning on new clients
# if len(server.clients) == 100:
# old_clients_num = 80
# server.new_clients = server.clients[old_clients_num:]
# server.clients = server.clients[:old_clients_num]
# server.num_clients = old_clients_num
# server.join_clients = int(old_clients_num * server.join_ratio)
# if not args.algorithm.startswith("Local"):
# server.train()
# server.prepare_global_model()
# n_epochs = 20
# print(f"\n\n==> Training for new clients for {n_epochs} epochs")
# server.train_new_clients(epochs=n_epochs)
def get_args():
parser = argparse.ArgumentParser()
# general
parser.add_argument('-go', "--goal", type=str, default="cnn",
help="The goal for this experiment")
parser.add_argument('-dev', "--device", type=str, default="cuda",
choices=["cpu", "cuda"])
parser.add_argument('-did', "--device_id", type=str, default="0")
parser.add_argument('-data', "--dataset", type=str, default="cifar10",
choices=["cifar10", "cifar100", "organaminist25", "organaminist50", "organaminist100", "Office-home20"])
parser.add_argument('-nb', "--num_classes", type=int, default=10)
parser.add_argument('-m', "--model", type=str, default="cnn")
parser.add_argument('-p', "--predictor", type=str, default="cnn")
parser.add_argument('-lbs', "--batch_size", type=int, default=10)
parser.add_argument('-lr', "--local_learning_rate", type=float, default=0.005,
help="Local learning rate")
parser.add_argument('-gr', "--global_rounds", type=int, default=3)
parser.add_argument('-ls', "--local_steps", type=int, default=5)
parser.add_argument('-algo', "--algorithm", type=str, default="PGFed",
choices=["Local", "FedAvg", "FedDyn", "pFedMe", "FedFomo", "APFL", "FedRep",
"LGFedAvg", "FedPer", "PerAvg", "FedRoD", "FedBABU", "PGFed"])
parser.add_argument('-jr', "--join_ratio", type=float, default=0.25,
help="Ratio of clients per round")
parser.add_argument('-nc', "--num_clients", type=int, default=25,
help="Total number of clients")
parser.add_argument('-pv', "--prev", type=int, default=0,
help="Previous Running times")
parser.add_argument('-t', "--times", type=int, default=1,
help="Running times")
parser.add_argument('-eg', "--eval_gap", type=int, default=1,
help="Rounds gap for evaluation")
# FL algorithms (multiple algs)
parser.add_argument('-bt', "--beta", type=float, default=0.0,
help="PGFed momentum, average moving parameter for pFedMe, Second learning rate of Per-FedAvg")
parser.add_argument('-lam', "--lambdaa", type=float, default=1.0,
help="PGFed learning rate for a_i, Regularization weight for pFedMe")
parser.add_argument('-mu', "--mu", type=float, default=0,
help="PGFed weight for aux risk, pFedMe weight")
parser.add_argument('-K', "--K", type=int, default=5,
help="Number of personalized training steps for pFedMe")
parser.add_argument('-lrp', "--p_learning_rate", type=float, default=0.01,
help="pFedMe personalized learning rate to caculate theta aproximately using K steps")
# FedFomo
parser.add_argument('-M', "--M", type=int, default=8,
help="Server only sends M client models to one client at each round")
# APFL
parser.add_argument('-al', "--alpha", type=float, default=0.5)
# FedRep
parser.add_argument('-pls', "--plocal_steps", type=int, default=5)
# FedBABU
parser.add_argument('-fts', "--fine_tuning_steps", type=int, default=1)
# save directories
parser.add_argument("--hist_dir", type=str, default="../results/", help="dir path for output hist file")
parser.add_argument("--log_dir", type=str, default="../logs/", help="dir path for log (main results) file")
parser.add_argument("--ckpt_dir", type=str, default="../checkpoints/", help="dir path for checkpoints")
args = parser.parse_args()
return args
if __name__ == "__main__":
total_start = time.time()
args = get_args()
# os.environ["CUDA_VISIBLE_DEVICES"] = args.device_id
if args.device == "cuda" and not torch.cuda.is_available():
print("\ncuda is not avaiable.\n")
args.device = "cpu"
print("=" * 50)
print("Algorithm: {}".format(args.algorithm))
print("Local batch size: {}".format(args.batch_size))
print("Local steps: {}".format(args.local_steps))
print("Local learing rate: {}".format(args.local_learning_rate))
print("Total number of clients: {}".format(args.num_clients))
print("Clients join in each round: {}".format(args.join_ratio))
print("Global rounds: {}".format(args.global_rounds))
print("Running times: {}".format(args.times))
print("Dataset: {}".format(args.dataset))
print("Local model: {}".format(args.model))
print("Using device: {}".format(args.device))
if args.device == "cuda":
print("Cuda device id: {}".format(os.environ["CUDA_VISIBLE_DEVICES"]))
print("=" * 50)
run(args)