You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
2023-05-26 01:39:08 - INFO: dict_items([('dataset', 'resume-zh'), ('dist_emb_size', 20), ('type_emb_size', 20), ('lstm_hid_size', 512), ('conv_hid_size', 96), ('bert_hid_size', 768), ('biaffine_size', 512), ('ffnn_hid_size', 288), ('dilation', [1, 2, 3]), ('emb_dropout', 0.5), ('conv_dropout', 0.5), ('out_dropout', 0.33), ('epochs', 10), ('batch_size', 16), ('learning_rate', 0.001), ('weight_decay', 0), ('clip_grad_norm', 5.0), ('bert_name', 'bert-base-chinese'), ('bert_learning_rate', 5e-06), ('warm_factor', 0.1), ('use_bert_last_4_layers', False), ('seed', 123), ('config', 'config/resume-zh.json'), ('device', 'cpu'), ('fp16', False), ('use_precision_alignment', False)])
2023-05-26 01:39:08 - INFO: Loading Data
2023-05-26 01:39:08 - INFO:
+-----------+-----------+----------+
| resume-zh | sentences | entities |
+-----------+-----------+----------+
| train | 3819 | 13438 |
| dev | 463 | 1497 |
| test | 477 | 1630 |
+-----------+-----------+----------+
2023-05-26 01:39:26 - INFO: Building Model
Some weights of the model checkpoint at bert-base-chinese were not used when initializing BertModel: ['cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.dense.bias', 'cls.predictions.decoder.weight', 'cls.seq_relationship.bias', 'cls.predictions.bias', 'cls.seq_relationship.weight', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.dense.weight']
This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
2023-05-26 01:39:28 - INFO: Epoch: 0
---start training---
s222 x type: torch.float32
s222 x type: torch.Size([15, 552, 180, 180])
/data/zhejiang/yusl/anaconda3/envs/w2ner_teco/lib/python3.8/site-packages/sklearn/metrics/_classification.py:1308: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use zero_division parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
2023-05-26 01:44:07 - INFO: EVAL Label F1 [0.993111 0. 0. 0. 0. 0. 0. 0.
校友您好,能帮忙看下源码适配CPU运行吗?
2023-05-26 01:39:08 - INFO: dict_items([('dataset', 'resume-zh'), ('dist_emb_size', 20), ('type_emb_size', 20), ('lstm_hid_size', 512), ('conv_hid_size', 96), ('bert_hid_size', 768), ('biaffine_size', 512), ('ffnn_hid_size', 288), ('dilation', [1, 2, 3]), ('emb_dropout', 0.5), ('conv_dropout', 0.5), ('out_dropout', 0.33), ('epochs', 10), ('batch_size', 16), ('learning_rate', 0.001), ('weight_decay', 0), ('clip_grad_norm', 5.0), ('bert_name', 'bert-base-chinese'), ('bert_learning_rate', 5e-06), ('warm_factor', 0.1), ('use_bert_last_4_layers', False), ('seed', 123), ('config', 'config/resume-zh.json'), ('device', 'cpu'), ('fp16', False), ('use_precision_alignment', False)])
2023-05-26 01:39:08 - INFO: Loading Data
2023-05-26 01:39:08 - INFO:
+-----------+-----------+----------+
| resume-zh | sentences | entities |
+-----------+-----------+----------+
| train | 3819 | 13438 |
| dev | 463 | 1497 |
| test | 477 | 1630 |
+-----------+-----------+----------+
2023-05-26 01:39:26 - INFO: Building Model
Some weights of the model checkpoint at bert-base-chinese were not used when initializing BertModel: ['cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.dense.bias', 'cls.predictions.decoder.weight', 'cls.seq_relationship.bias', 'cls.predictions.bias', 'cls.seq_relationship.weight', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.dense.weight']
2023-05-26 01:39:28 - INFO: Epoch: 0
---start training---
s222 x type: torch.float32
s222 x type: torch.Size([15, 552, 180, 180])
/data/zhejiang/yusl/anaconda3/envs/w2ner_teco/lib/python3.8/site-packages/sklearn/metrics/_classification.py:1308: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use
zero_division
parameter to control this behavior._warn_prf(average, modifier, msg_start, len(result))
2023-05-26 01:44:07 - INFO: EVAL Label F1 [0.993111 0. 0. 0. 0. 0. 0. 0.
2023-05-26 01:44:07 - INFO:
+--------+--------+-----------+--------+
| EVAL 0 | F1 | Precision | Recall |
+--------+--------+-----------+--------+
| Label | 0.0993 | 0.0987 | 0.0999 |
| Entity | 0.0000 | 0.0000 | 0.0000 |
The text was updated successfully, but these errors were encountered: