|
| 1 | +# ruff: ignore |
| 2 | +# SPDX-License-Identifier: Apache-2.0 |
| 3 | + |
| 4 | +from __future__ import annotations |
| 5 | + |
| 6 | +from typing import Any, Literal, overload |
| 7 | + |
| 8 | +import torch |
| 9 | + |
| 10 | +def get_scheduler_metadata( |
| 11 | + batch_size: int, |
| 12 | + max_seqlen_q: int, |
| 13 | + max_seqlen_k: int, |
| 14 | + num_heads_q: int, |
| 15 | + num_heads_kv: int, |
| 16 | + headdim: int, |
| 17 | + cache_seqlens: torch.Tensor, |
| 18 | + qkv_dtype: torch.dtype = ..., |
| 19 | + headdim_v: int | None = ..., |
| 20 | + cu_seqlens_q: torch.Tensor | None = ..., |
| 21 | + cu_seqlens_k_new: torch.Tensor | None = ..., |
| 22 | + cache_leftpad: torch.Tensor | None = ..., |
| 23 | + page_size: int = ..., |
| 24 | + max_seqlen_k_new: int = ..., |
| 25 | + causal: bool = ..., |
| 26 | + window_size: tuple[int, int] = ..., |
| 27 | + has_softcap: bool = ..., |
| 28 | + num_splits: int = ..., |
| 29 | + pack_gqa: Any | None = ..., |
| 30 | + sm_margin: int = ..., |
| 31 | +): ... |
| 32 | +@overload |
| 33 | +def flash_attn_varlen_func( |
| 34 | + q: tuple[int, int, int], |
| 35 | + k: tuple[int, int, int], |
| 36 | + v: tuple[int, int, int], |
| 37 | + max_seqlen_q: int, |
| 38 | + cu_seqlens_q: torch.Tensor | None, |
| 39 | + max_seqlen_k: int, |
| 40 | + cu_seqlens_k: torch.Tensor | None = ..., |
| 41 | + seqused_k: Any | None = ..., |
| 42 | + q_v: Any | None = ..., |
| 43 | + dropout_p: float = ..., |
| 44 | + causal: bool = ..., |
| 45 | + window_size: list[int] | None = ..., |
| 46 | + softmax_scale: float = ..., |
| 47 | + alibi_slopes: tuple[int] | tuple[int, int] | None = ..., |
| 48 | + deterministic: bool = ..., |
| 49 | + return_attn_probs: bool = ..., |
| 50 | + block_table: Any | None = ..., |
| 51 | + return_softmax_lse: Literal[False] = ..., |
| 52 | + out: Any = ..., |
| 53 | + # FA3 Only |
| 54 | + scheduler_metadata: Any | None = ..., |
| 55 | + q_descale: Any | None = ..., |
| 56 | + k_descale: Any | None = ..., |
| 57 | + v_descale: Any | None = ..., |
| 58 | + # Version selector |
| 59 | + fa_version: int = ..., |
| 60 | +) -> tuple[int, int, int]: ... |
| 61 | +@overload |
| 62 | +def flash_attn_varlen_func( |
| 63 | + q: tuple[int, int, int], |
| 64 | + k: tuple[int, int, int], |
| 65 | + v: tuple[int, int, int], |
| 66 | + max_seqlen_q: int, |
| 67 | + cu_seqlens_q: torch.Tensor | None, |
| 68 | + max_seqlen_k: int, |
| 69 | + cu_seqlens_k: torch.Tensor | None = ..., |
| 70 | + seqused_k: Any | None = ..., |
| 71 | + q_v: Any | None = ..., |
| 72 | + dropout_p: float = ..., |
| 73 | + causal: bool = ..., |
| 74 | + window_size: list[int] | None = ..., |
| 75 | + softmax_scale: float = ..., |
| 76 | + alibi_slopes: tuple[int] | tuple[int, int] | None = ..., |
| 77 | + deterministic: bool = ..., |
| 78 | + return_attn_probs: bool = ..., |
| 79 | + block_table: Any | None = ..., |
| 80 | + return_softmax_lse: Literal[True] = ..., |
| 81 | + out: Any = ..., |
| 82 | + # FA3 Only |
| 83 | + scheduler_metadata: Any | None = ..., |
| 84 | + q_descale: Any | None = ..., |
| 85 | + k_descale: Any | None = ..., |
| 86 | + v_descale: Any | None = ..., |
| 87 | + # Version selector |
| 88 | + fa_version: int = ..., |
| 89 | +) -> tuple[tuple[int, int, int], tuple[int, int]]: ... |
| 90 | +@overload |
| 91 | +def flash_attn_with_kvcache( |
| 92 | + q: tuple[int, int, int, int], |
| 93 | + k_cache: tuple[int, int, int, int], |
| 94 | + v_cache: tuple[int, int, int, int], |
| 95 | + k: tuple[int, int, int, int] | None = ..., |
| 96 | + v: tuple[int, int, int, int] | None = ..., |
| 97 | + rotary_cos: tuple[int, int] | None = ..., |
| 98 | + rotary_sin: tuple[int, int] | None = ..., |
| 99 | + cache_seqlens: int | torch.Tensor | None = None, |
| 100 | + cache_batch_idx: torch.Tensor | None = None, |
| 101 | + cache_leftpad: torch.Tensor | None = ..., |
| 102 | + block_table: torch.Tensor | None = ..., |
| 103 | + softmax_scale: float = ..., |
| 104 | + causal: bool = ..., |
| 105 | + window_size: tuple[int, int] = ..., # -1 means infinite context window |
| 106 | + softcap: float = ..., |
| 107 | + rotary_interleaved: bool = ..., |
| 108 | + alibi_slopes: tuple[int] | tuple[int, int] | None = ..., |
| 109 | + num_splits: int = ..., |
| 110 | + return_softmax_lse: Literal[False] = ..., |
| 111 | + *, |
| 112 | + out: Any = ..., |
| 113 | + # FA3 Only |
| 114 | + scheduler_metadata: Any | None = ..., |
| 115 | + q_descale: Any | None = ..., |
| 116 | + k_descale: Any | None = ..., |
| 117 | + v_descale: Any | None = ..., |
| 118 | + # Version selector |
| 119 | + fa_version: int = ..., |
| 120 | +) -> tuple[int, int, int, int]: ... |
| 121 | +@overload |
| 122 | +def flash_attn_with_kvcache( |
| 123 | + q: tuple[int, int, int, int], |
| 124 | + k_cache: tuple[int, int, int, int], |
| 125 | + v_cache: tuple[int, int, int, int], |
| 126 | + k: tuple[int, int, int, int] | None = ..., |
| 127 | + v: tuple[int, int, int, int] | None = ..., |
| 128 | + rotary_cos: tuple[int, int] | None = ..., |
| 129 | + rotary_sin: tuple[int, int] | None = ..., |
| 130 | + cache_seqlens: int | torch.Tensor | None = None, |
| 131 | + cache_batch_idx: torch.Tensor | None = None, |
| 132 | + cache_leftpad: torch.Tensor | None = ..., |
| 133 | + block_table: torch.Tensor | None = ..., |
| 134 | + softmax_scale: float = ..., |
| 135 | + causal: bool = ..., |
| 136 | + window_size: tuple[int, int] = ..., # -1 means infinite context window |
| 137 | + softcap: float = ..., |
| 138 | + rotary_interleaved: bool = ..., |
| 139 | + alibi_slopes: tuple[int] | tuple[int, int] | None = ..., |
| 140 | + num_splits: int = ..., |
| 141 | + return_softmax_lse: Literal[True] = ..., |
| 142 | + *, |
| 143 | + out: Any = ..., |
| 144 | + # FA3 Only |
| 145 | + scheduler_metadata: Any | None = ..., |
| 146 | + q_descale: Any | None = ..., |
| 147 | + k_descale: Any | None = ..., |
| 148 | + v_descale: Any | None = ..., |
| 149 | + # Version selector |
| 150 | + fa_version: int = ..., |
| 151 | +) -> tuple[tuple[int, int, int], tuple[int, int]]: ... |
| 152 | +@overload |
| 153 | +def sparse_attn_func( |
| 154 | + q: tuple[int, int, int, int], |
| 155 | + k: tuple[int, int, int, int], |
| 156 | + v: tuple[int, int, int, int], |
| 157 | + block_count: tuple[int, int, float], |
| 158 | + block_offset: tuple[int, int, float, int], |
| 159 | + column_count: tuple[int, int, float], |
| 160 | + column_index: tuple[int, int, float, int], |
| 161 | + dropout_p: float = ..., |
| 162 | + softmax_scale: float = ..., |
| 163 | + causal: bool = ..., |
| 164 | + softcap: float = ..., |
| 165 | + alibi_slopes: tuple[int] | tuple[int, int] | None = ..., |
| 166 | + deterministic: bool = ..., |
| 167 | + return_attn_probs: bool = ..., |
| 168 | + *, |
| 169 | + return_softmax_lse: Literal[False] = ..., |
| 170 | + out: Any = ..., |
| 171 | +) -> tuple[int, int, int]: ... |
| 172 | +@overload |
| 173 | +def sparse_attn_func( |
| 174 | + q: tuple[int, int, int, int], |
| 175 | + k: tuple[int, int, int, int], |
| 176 | + v: tuple[int, int, int, int], |
| 177 | + block_count: tuple[int, int, float], |
| 178 | + block_offset: tuple[int, int, float, int], |
| 179 | + column_count: tuple[int, int, float], |
| 180 | + column_index: tuple[int, int, float, int], |
| 181 | + dropout_p: float = ..., |
| 182 | + softmax_scale: float = ..., |
| 183 | + causal: bool = ..., |
| 184 | + softcap: float = ..., |
| 185 | + alibi_slopes: tuple[int] | tuple[int, int] | None = ..., |
| 186 | + deterministic: bool = ..., |
| 187 | + return_attn_probs: bool = ..., |
| 188 | + *, |
| 189 | + return_softmax_lse: Literal[True] = ..., |
| 190 | + out: Any = ..., |
| 191 | +) -> tuple[tuple[int, int, int], tuple[int, int]]: ... |
| 192 | +@overload |
| 193 | +def sparse_attn_varlen_func( |
| 194 | + q: tuple[int, int, int], |
| 195 | + k: tuple[int, int, int], |
| 196 | + v: tuple[int, int, int], |
| 197 | + block_count: tuple[int, int, float], |
| 198 | + block_offset: tuple[int, int, float, int], |
| 199 | + column_count: tuple[int, int, float], |
| 200 | + column_index: tuple[int, int, float, int], |
| 201 | + cu_seqlens_q: torch.Tensor | None, |
| 202 | + cu_seqlens_k: torch.Tensor | None, |
| 203 | + max_seqlen_q: int, |
| 204 | + max_seqlen_k: int, |
| 205 | + dropout_p: float = ..., |
| 206 | + softmax_scale: float = ..., |
| 207 | + causal: bool = ..., |
| 208 | + softcap: float = ..., |
| 209 | + alibi_slopes: tuple[int] | tuple[int, int] | None = ..., |
| 210 | + deterministic: bool = ..., |
| 211 | + return_attn_probs: bool = ..., |
| 212 | + *, |
| 213 | + return_softmax_lse: Literal[False] = ..., |
| 214 | + out: Any = ..., |
| 215 | +) -> tuple[int, int, int]: ... |
| 216 | +@overload |
| 217 | +def sparse_attn_varlen_func( |
| 218 | + q: tuple[int, int, int], |
| 219 | + k: tuple[int, int, int], |
| 220 | + v: tuple[int, int, int], |
| 221 | + block_count: tuple[int, int, float], |
| 222 | + block_offset: tuple[int, int, float, int], |
| 223 | + column_count: tuple[int, int, float], |
| 224 | + column_index: tuple[int, int, float, int], |
| 225 | + cu_seqlens_q: torch.Tensor | None, |
| 226 | + cu_seqlens_k: torch.Tensor | None, |
| 227 | + max_seqlen_q: int, |
| 228 | + max_seqlen_k: int, |
| 229 | + dropout_p: float = ..., |
| 230 | + softmax_scale: float = ..., |
| 231 | + causal: bool = ..., |
| 232 | + softcap: float = ..., |
| 233 | + alibi_slopes: tuple[int] | tuple[int, int] | None = ..., |
| 234 | + deterministic: bool = ..., |
| 235 | + return_attn_probs: bool = ..., |
| 236 | + *, |
| 237 | + return_softmax_lse: Literal[True] = ..., |
| 238 | + out: Any = ..., |
| 239 | +) -> tuple[tuple[int, int, int], tuple[int, int]]: ... |
| 240 | +def is_fa_version_supported( |
| 241 | + fa_version: int, device: torch.device | None = None |
| 242 | +) -> bool: ... |
| 243 | +def fa_version_unsupported_reason( |
| 244 | + fa_version: int, device: torch.device | None = None |
| 245 | +) -> str | None: ... |
0 commit comments