-
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathGeometry.py
314 lines (235 loc) · 10.8 KB
/
Geometry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
'''
Copyright 2020 Amanpreet Singh,
Martin Bauer,
Sarang Joshi
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
'''
import numpy as np
'''
scale - function to scale the input to the given range
Parameters ----- x ----- input
l ----- lower limit
u ----- upper limit
'''
def scale(x, l, u):
return (x * (u - l)) + l
'''
Rectangle -------- Create a geometry class for 2d with the specified limits
Parameters ----- x_lower ---- lower limit in x dimension
x_upper ---- upper limit in x dimension
y_lower ---- lower limit in y dimension
y_upper ---- upper limit in y dimension
'''
class Rectangle():
def __init__(self, x_lower, x_upper, y_lower, y_upper):
self.x_lower = x_lower
self.x_upper = x_upper
self.y_lower = y_lower
self.y_upper = y_upper
'''
generate_points_on_boundary --- Generates specified number of random points on the boundary.
Parameters ------- num_points -- number of points to generate
Output -- Array of random points on the boundary.
'''
def generate_points_on_boundary(self, num_points):
x_pts = np.random.rand(num_points, 1)
y_pts = np.random.rand(num_points, 1)
x_pts = scale(x_pts, self.x_lower, self.x_upper)
y_pts = scale(y_pts, self.y_lower, self.y_upper)
for it in range(num_points):
push_to_axis = np.random.rand(1, 1)
if push_to_axis > 0.5:
push_to_upper = np.random.rand(1, 1)
if push_to_upper > 0.5:
x_pts[it, 0] = self.x_lower
else:
x_pts[it, 0] = self.x_upper
else:
push_to_upper = np.random.rand(1, 1)
if push_to_upper > 0.5:
y_pts[it, 0] = self.y_lower
else:
y_pts[it, 0] = self.y_upper
return np.concatenate((x_pts, y_pts), axis=-1)
'''
generate_random_points --- Generates specified number of random points.
Parameters ------- num_points -- number of points to generate
Output -- Array of random points.
'''
def generate_random_points(self, num_points):
x_pts = np.random.rand(num_points, 1)
y_pts = np.random.rand(num_points, 1)
x_pts = scale(x_pts, self.x_lower, self.x_upper)
y_pts = scale(y_pts, self.y_lower, self.y_upper)
return np.concatenate((x_pts, y_pts), axis=-1)
'''
generate_uniform_points --- Generates grid of size as specified.
Parameters ------- num_points -- size of grid is num_points x num_points.
Output -- Grid of the specified size vectorized.
'''
def generate_uniform_points(self, num_points):
x_pts = np.linspace(self.x_lower, self.x_upper, num_points)
y_pts = np.linspace(self.y_lower, self.y_upper, num_points)
complete_set = np.zeros((x_pts.shape[0] * y_pts.shape[0], 2))
idx = 0
for x in range(x_pts.shape[0]):
for y in range(y_pts.shape[0]):
complete_set[idx, 0] = x_pts[x]
complete_set[idx, 1] = y_pts[y]
idx += 1
return complete_set
'''
generate_corner_points --- Generates the 4 corner points
Parameters ------- None
Output -- Array of 4 corner points.
'''
def generate_corner_points(self):
x_pts = np.random.rand(4, 1)
y_pts = np.random.rand(4, 1)
x_pts[0:2, 0] = self.x_lower
x_pts[2:, 0] = self.x_upper
y_pts[0, 0] = self.y_lower
y_pts[1:, 0] = self.y_upper
y_pts[2, 0] = self.y_lower
y_pts[3:, 0] = self.y_upper
return np.concatenate((x_pts, y_pts), axis=-1)
'''
Cube -------- Create a geometry class for 3d with the specified limits
Parameters ----- x_lower ---- lower limit in x dimension
x_upper ---- upper limit in x dimension
y_lower ---- lower limit in y dimension
y_upper ---- upper limit in y dimension
z_lower ---- lower limit in z dimension
z_upper ---- upper limit in z dimension
'''
class Cube():
def __init__(self, x_lower, x_upper, y_lower, y_upper, z_lower, z_upper):
self.x_lower = x_lower
self.x_upper = x_upper
self.y_lower = y_lower
self.y_upper = y_upper
self.z_lower = z_lower
self.z_upper = z_upper
'''
generate_points_on_boundary --- Generates specified number of random points on the boundary.
Parameters ------- num_points -- number of points to generate
Output -- Array of random points on the boundary.
'''
def generate_points_on_boundary(self, num_points):
x_pts = np.random.rand(num_points, 1)
y_pts = np.random.rand(num_points, 1)
z_pts = np.random.rand(num_points, 1)
x_pts = scale(x_pts, self.x_lower, self.x_upper)
y_pts = scale(y_pts, self.y_lower, self.y_upper)
z_pts = scale(z_pts, self.z_lower, self.z_upper)
for it in range(num_points):
push_to_axis = np.random.rand(1, 1)
if (push_to_axis > 1/3) and (push_to_axis < 2/3):
push_to_upper = np.random.rand(1, 1)
if push_to_upper > 0.5:
x_pts[it, 0] = self.x_lower
else:
x_pts[it, 0] = self.x_upper
elif push_to_axis < 1/3 :
push_to_upper = np.random.rand(1, 1)
if push_to_upper > 0.5:
y_pts[it, 0] = self.y_lower
else:
y_pts[it, 0] = self.y_upper
else:
push_to_upper = np.random.rand(1, 1)
if push_to_upper > 0.5:
z_pts[it, 0] = self.z_lower
else:
z_pts[it, 0] = self.z_upper
return np.concatenate((x_pts, y_pts, z_pts), axis=-1)
'''
generate_random_points --- Generates specified number of random points.
Parameters ------- num_points -- number of points to generate
Output -- Array of random points.
'''
def generate_random_points(self, num_points):
x_pts = np.random.rand(num_points, 1)
y_pts = np.random.rand(num_points, 1)
z_pts = np.random.rand(num_points, 1)
x_pts = scale(x_pts, self.x_lower, self.x_upper)
y_pts = scale(y_pts, self.y_lower, self.y_upper)
z_pts = scale(z_pts, self.z_lower, self.z_upper)
return np.concatenate((x_pts, y_pts, z_pts), axis=-1)
'''
generate_uniform_points --- Generates grid of size as specified.
Parameters ------- num_points -- size of grid is num_points x num_points.
Output -- Grid of the specified size vectorized.
'''
def generate_uniform_points(self, num_points):
x_pts = np.linspace(self.x_lower, self.x_upper, num_points)
y_pts = np.linspace(self.y_lower, self.y_upper, num_points)
z_pts = np.linspace(self.z_lower, self.z_upper, num_points)
complete_set = np.zeros((x_pts.shape[0] * y_pts.shape[0] * z_pts.shape[0], 3))
idx = 0
for x in range(x_pts.shape[0]):
for y in range(y_pts.shape[0]):
for z in range(z_pts.shape[0]):
complete_set[idx, 0] = x_pts[x]
complete_set[idx, 1] = y_pts[y]
complete_set[idx, 2] = z_pts[z]
idx += 1
return complete_set
'''
generate_corner_points --- Generates the 8 corner points
Parameters ------- None
Output -- Array of 8 corner points.
'''
def generate_corner_points(self):
x_pts = np.random.rand(8, 1)
y_pts = np.random.rand(8, 1)
z_pts = np.random.rand(8, 1)
x_pts[0:4, 0] = self.x_lower
x_pts[4:, 0] = self.x_upper
y_pts[0:2, 0] = self.y_lower
y_pts[2:4, 0] = self.y_upper
y_pts[4:6, 0] = self.y_lower
y_pts[6:8, 0] = self.y_upper
z_pts[0:8:2, 0] = self.y_upper
z_pts[1:8:2, 0] = self.y_lower
return np.concatenate((x_pts, y_pts, z_pts), axis=-1)
'''
MultiDimensionalCube -------- Create a geometry class for n-d with the specified limits
Parameters ----- lower ---- lower limit in any dimension
upper ---- upper limit in any dimension
'''
class MultiDimensionalCude():
def __init__(self, n_dim, lower, upper):
self.lower = lower
self.upper = upper
self.n_dims = n_dim
'''
generate_points_on_boundary --- Generates specified number of random points on the boundary.
Parameters ------- num_points -- number of points to generate
Output -- Array of random points on the boundary.
'''
def generate_points_on_boundary(self, num_points):
pts = np.random.rand(num_points, self.n_dims)
pts = scale(pts, self.lower, self.upper)
for it in range(num_points):
push_to_axis = np.random.rand(1, 1)
for c in range(self.n_dims):
if (push_to_axis > c / self.n_dims) and (push_to_axis < (c+1) / self.n_dims):
push_to_upper = np.random.rand(1, 1)
if push_to_upper > 0.5:
pts[it, c] = self.lower
else:
pts[it, c] = self.upper
return pts
'''
generate_random_points --- Generates specified number of random points.
Parameters ------- num_points -- number of points to generate
Output -- Array of random points.
'''
def generate_random_points(self, num_points):
pts = np.random.rand(num_points, self.n_dims)
pts = scale(pts, self.lower, self.upper)
return pts