-
Notifications
You must be signed in to change notification settings - Fork 13
/
setup.py
90 lines (74 loc) · 2.6 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#!/usr/bin/env python
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import glob
import os
from setuptools import find_packages, setup
import torch
from torch.utils.cpp_extension import CUDA_HOME, CppExtension, CUDAExtension
torch_ver = [int(x) for x in torch.__version__.split(".")[:2]]
assert torch_ver >= [1, 3], "Requires PyTorch >= 1.3"
def get_extensions():
this_dir = os.path.dirname(os.path.abspath(__file__))
extensions_dir = os.path.join(this_dir, "adet", "layers", "csrc")
main_source = os.path.join(extensions_dir, "vision.cpp")
sources = glob.glob(os.path.join(extensions_dir, "**", "*.cpp"))
source_cuda = glob.glob(os.path.join(extensions_dir, "**", "*.cu")) + glob.glob(
os.path.join(extensions_dir, "*.cu")
)
sources = [main_source] + sources
extension = CppExtension
extra_compile_args = {"cxx": []}
define_macros = []
if (torch.cuda.is_available() and CUDA_HOME is not None) or os.getenv(
"FORCE_CUDA", "0"
) == "1":
extension = CUDAExtension
sources += source_cuda
define_macros += [("WITH_CUDA", None)]
extra_compile_args["nvcc"] = [
"-DCUDA_HAS_FP16=1",
"-D__CUDA_NO_HALF_OPERATORS__",
"-D__CUDA_NO_HALF_CONVERSIONS__",
"-D__CUDA_NO_HALF2_OPERATORS__",
]
# It's better if pytorch can do this by default ..
CC = os.environ.get("CC", None)
if CC is not None:
extra_compile_args["nvcc"].append("-ccbin={}".format(CC))
sources = [os.path.join(extensions_dir, s) for s in sources]
include_dirs = [extensions_dir]
ext_modules = [
extension(
"core._C",
sources,
include_dirs=include_dirs,
define_macros=define_macros,
extra_compile_args=extra_compile_args,
)
]
return ext_modules
setup(
name="Dance",
version="1.0.0",
author="liuzichen@u.nus.edu",
url="https://github.com/lkevinzc/dance",
description="A Deep Attentive Contour Model for Efficient Instance Segmentation",
packages=find_packages(exclude=("configs", "tests", "detectron2")),
python_requires=">=3.6",
install_requires=[
"termcolor>=1.1",
"Pillow>=6.0",
"yacs>=0.1.6",
"tabulate",
"cloudpickle",
"matplotlib",
"tqdm>4.29.0",
"tensorboard",
"python-Levenshtein",
"Polygon3",
"shapely",
],
extras_require={"all": ["psutil"]},
ext_modules=get_extensions(),
cmdclass={"build_ext": torch.utils.cpp_extension.BuildExtension},
)