File tree Expand file tree Collapse file tree 1 file changed +7
-9
lines changed Expand file tree Collapse file tree 1 file changed +7
-9
lines changed Original file line number Diff line number Diff line change 4
4
5
5
2、 分别使用感知器算法学习区分下列两类样本的线性分类器:
6
6
7
- ![ img] ( .\ sample_data.png )
7
+ ![ img] ( ./ sample_data.png )
8
8
9
9
3、 MNIST数据集测试:使用TrainSamples中的30000个17维特征手写数字样本训练线性分类器区分10个类别,TrainLabels中包含训练样本的标签;测试线性分类器对TestSamples中10000个样本的识别正确率。
10
10
@@ -31,10 +31,9 @@ F(x1, x2) = 0.4469281*x1 + 0.185913*x2 – 0.6
31
31
![ img] ( ./multiclass.png )
32
32
33
33
- 分类正确率:
34
- - 感知器算法:
35
-
36
- ```
37
- precision recall f1-score support
34
+ - 感知器算法:
35
+
36
+ precision recall f1-score support
38
37
0 0.902 0.888 0.895 1025
39
38
1 0.917 0.894 0.905 1179
40
39
2 0.767 0.838 0.801 882
@@ -45,10 +44,9 @@ F(x1, x2) = 0.4469281*x1 + 0.185913*x2 – 0.6
45
44
7 0.876 0.864 0.870 1061
46
45
8 0.758 0.726 0.741 1007
47
46
9 0.734 0.777 0.755 940
48
-
49
- avg / total 0.821 0.820 0.820 10000
50
- Test acc: 0.8196
51
- ```
47
+
48
+ avg / total 0.821 0.820 0.820 10000
49
+ Test acc: 0.8196
52
50
53
51
54
52
- 最小平方误差算法:
You can’t perform that action at this time.
0 commit comments