You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
const app = await client("https://xxxxxxx.com/", {auth:['user','password'});
const result = await app.predict(10, [
exampleImage, // blob in 'Image' Image component
]);
console.log(result.data);
What should have happened?
Not received an error.
What browsers do you use to access Fooocus?
Google Chrome
Where are you running Fooocus?
Locally
What operating system are you using?
WIndows 11
Console logs
C:\Users\Scott\Downloads\Fooocus_win64_2-5-0>.\python_embeded\python.exe -s Fooocus\entry_with_update.py --port 7866 --listen 0.0.0.0
Already up-to-date
Update succeeded.
[System ARGV] ['Fooocus\\entry_with_update.py', '--port', '7866', '--listen', '0.0.0.0']
Python 3.10.9 (tags/v3.10.9:1dd9be6, Dec 6 2022, 20:01:21) [MSC v.1934 64 bit (AMD64)]
Fooocus version: 2.5.5
[Cleanup] Attempting to delete content of temp dir C:\Users\Scott\AppData\Local\Temp\fooocus
[Cleanup] Cleanup successful
Total VRAM 12282 MB, total RAM 65277 MB
Set vram state to: NORMAL_VRAM
Always offload VRAM
Device: cuda:0 NVIDIA GeForce RTX 4070 Ti : native
VAE dtype: torch.bfloat16
Using pytorch cross attention
Refiner unloaded.
Running on local URL: http://0.0.0.0:7866
model_type EPS
UNet ADM Dimension 2816
IMPORTANT: You are using gradio version 3.41.2, however version 5.0.1 is available, please upgrade.
--------
Using pytorch attention in VAE
Working with z of shape (1, 4, 32, 32) = 4096 dimensions.
Using pytorch attention in VAE
extra {'cond_stage_model.clip_l.text_projection', 'cond_stage_model.clip_l.logit_scale'}
left over keys: dict_keys(['cond_stage_model.clip_l.transformer.text_model.embeddings.position_ids'])
Base model loaded: C:\Users\Scott\Downloads\Fooocus_win64_2-5-0\Fooocus\models\checkpoints\juggernautXL_v8Rundiffusion.safetensors
VAE loaded: None
Request to load LoRAs [('sd_xl_offset_example-lora_1.0.safetensors', 0.1)] for model [C:\Users\Scott\Downloads\Fooocus_win64_2-5-0\Fooocus\models\checkpoints\juggernautXL_v8Rundiffusion.safetensors].
Loaded LoRA [C:\Users\Scott\Downloads\Fooocus_win64_2-5-0\Fooocus\models\loras\sd_xl_offset_example-lora_1.0.safetensors] for UNet [C:\Users\Scott\Downloads\Fooocus_win64_2-5-0\Fooocus\models\checkpoints\juggernautXL_v8Rundiffusion.safetensors] with 788 keys at weight 0.1.
Fooocus V2 Expansion: Vocab with 642 words.
Fooocus Expansion engine loaded for cuda:0, use_fp16 = True.
Requested to load SDXLClipModel
Requested to load GPT2LMHeadModel
Loading 2 new models
[Fooocus Model Management] Moving model(s) has taken 0.30 seconds
Started worker with PID 55052
App started successful. Use the app with http://localhost:7866/ or 0.0.0.0:7866
To create a public link, set`share=True`in`launch()`.Traceback (most recent call last): File "C:\Users\Scott\Downloads\Fooocus_win64_2-5-0\python_embeded\lib\site-packages\gradio\routes.py", line 488, in run_predict output = await app.get_blocks().process_api( File "C:\Users\Scott\Downloads\Fooocus_win64_2-5-0\python_embeded\lib\site-packages\gradio\blocks.py", line 1429, in process_api inputs = self.preprocess_data(fn_index, inputs, state) File "C:\Users\Scott\Downloads\Fooocus_win64_2-5-0\python_embeded\lib\site-packages\gradio\blocks.py", line 1239, in preprocess_data processed_input.append(block.preprocess(inputs[i])) File "C:\Users\Scott\Downloads\Fooocus_win64_2-5-0\Fooocus\modules\gradio_hijack.py", line 277, in preprocess assert isinstance(x, str)AssertionError
Additional information
No response
The text was updated successfully, but these errors were encountered:
Checklist
What happened?
Using gradio api receive error
node:internal/process/esm_loader:40
internalBinding('errors').triggerUncaughtException(
^
{
type: 'status',
stage: 'error',
endpoint: '/predict',
fn_index: 13,
message: null,
queue: false,
time: 2024-10-16T18:26:15.489Z
}
Steps to reproduce the problem
run code shown
import { client } from "@gradio/client";
const response_0 = await fetch("https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/bus.png");
const exampleImage = await response_0.blob();
const app = await client("https://xxxxxxx.com/", {auth:['user','password'});
const result = await app.predict(10, [
exampleImage, // blob in 'Image' Image component
]);
console.log(result.data);
What should have happened?
Not received an error.
What browsers do you use to access Fooocus?
Google Chrome
Where are you running Fooocus?
Locally
What operating system are you using?
WIndows 11
Console logs
Additional information
No response
The text was updated successfully, but these errors were encountered: