DIKI is trained and evaluated on MTIL benchmark from ZSCL. However, for the better consistency, we apply the dataset splits from CoOp.
We suggest putting all datasets under the same folder (say $DATA) to ease management and following the instructions below to organize datasets to avoid modifying the source code. The file structure looks like
$DATA/
|–– caltech-101/
|–– oxford_pets/
|–– stanford_cars/
|-- ...
The instructions to prepare each dataset are detailed below.
- Create a folder named
caltech-101/
under$DATA
. - Download
101_ObjectCategories.tar.gz
from https://data.caltech.edu/records/mzrjq-6wc02 and extract the file under$DATA/caltech-101
. - Download
split_zhou_Caltech101.json
from this link and put it under$DATA/caltech-101
.
The directory structure should look like
caltech-101/
|–– 101_ObjectCategories/
|–– split_zhou_Caltech101.json
- Create a folder named
oxford_pets/
under$DATA
. - Download the images from https://www.robots.ox.ac.uk/~vgg/data/pets/data/images.tar.gz.
- Download the annotations from https://www.robots.ox.ac.uk/~vgg/data/pets/data/annotations.tar.gz.
- Download
split_zhou_OxfordPets.json
from this link.
The directory structure should look like
oxford_pets/
|–– images/
|–– annotations/
|–– split_zhou_OxfordPets.json
- Create a folder named
stanford_cars/
under$DATA
. Download the train images http://ai.stanford.edu/~jkrause/car196/cars_train.tgz.Download the test images http://ai.stanford.edu/~jkrause/car196/cars_test.tgz.Download the train labels https://ai.stanford.edu/~jkrause/cars/car_devkit.tgz.Download the test labels http://ai.stanford.edu/~jkrause/car196/cars_test_annos_withlabels.mat.- The original download link has been broken, please refer to pytorch/vision#7545 (comment) for solution.
- Download
split_zhou_StanfordCars.json
from this link.
The directory structure should look like
stanford_cars/
|–– cars_test\
|–– cars_test_annos_withlabels.mat
|–– cars_train\
|–– devkit\
|–– split_zhou_StanfordCars.json
- Create a folder named
oxford_flowers/
under$DATA
. - Download the images and labels from https://www.robots.ox.ac.uk/~vgg/data/flowers/102/102flowers.tgz and https://www.robots.ox.ac.uk/~vgg/data/flowers/102/imagelabels.mat respectively.
- Download
cat_to_name.json
from here. - Download
split_zhou_OxfordFlowers.json
from here.
The directory structure should look like
oxford_flowers/
|–– cat_to_name.json
|–– imagelabels.mat
|–– jpg/
|–– split_zhou_OxfordFlowers.json
- Download the dataset from https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/ and extract the file
food-101.tar.gz
under$DATA
, resulting in a folder named$DATA/food-101/
. - Download
split_zhou_Food101.json
from here.
The directory structure should look like
food-101/
|–– images/
|–– license_agreement.txt
|–– meta/
|–– README.txt
|–– split_zhou_Food101.json
- Download the data from https://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/archives/fgvc-aircraft-2013b.tar.gz.
- Extract
fgvc-aircraft-2013b.tar.gz
and keep onlydata/
. - Move
data/
to$DATA
and rename the folder tofgvc_aircraft/
.
The directory structure should look like
fgvc_aircraft/
|–– images/
|–– ... # a bunch of .txt files
- Create a folder named
sun397/
under$DATA
. - Download the images http://vision.princeton.edu/projects/2010/SUN/SUN397.tar.gz.
- Download the partitions https://vision.princeton.edu/projects/2010/SUN/download/Partitions.zip.
- Extract these files under
$DATA/sun397/
. - Download
split_zhou_SUN397.json
from this link.
The directory structure should look like
sun397/
|–– SUN397/
|–– split_zhou_SUN397.json
|–– ... # a bunch of .txt files
- Download the dataset from https://www.robots.ox.ac.uk/~vgg/data/dtd/download/dtd-r1.0.1.tar.gz and extract it to
$DATA
. This should lead to$DATA/dtd/
. - Download
split_zhou_DescribableTextures.json
from this link.
The directory structure should look like
dtd/
|–– images/
|–– imdb/
|–– labels/
|–– split_zhou_DescribableTextures.json
- Create a folder named
eurosat/
under$DATA
. - Download the dataset from http://madm.dfki.de/files/sentinel/EuroSAT.zip and extract it to
$DATA/eurosat/
. - Download
split_zhou_EuroSAT.json
from here.
The directory structure should look like
eurosat/
|–– 2750/
|–– split_zhou_EuroSAT.json
- Create a folder named
mnist/
under$DATA
. - Download four files from http://yann.lecun.com/exdb/mnist/ and put them into
$DATA/mnist/
.
The directory structure should look like
mnist/
|–– t10k-images-idx3-ubyte
|–– t10k-labels-idx1-ubyte
|–– train-images-idx3-ubyte
|–– train-labels-idx1-ubyte
- Create a folder named
cifar100/
under$DATA
. - Download the dataset from https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz and extract it to
$DATA/cifar100/
.
The directory structure should look like
cifar100/
|–– meta
|–– test
|–– train