-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathconfig_small_075.py
executable file
·76 lines (54 loc) · 1.97 KB
/
config_small_075.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
exp_num = 0
dataset = 'celeba_spoof'
multi_task_learning = True
evaluation = True
test_steps = None
datasets = dict(LCCFASD_root='./LCC_FASDcropped',
Celeba_root='./CelebA_Spoof',
Casia_root='./CASIA')
external = dict(train=dict(), val=dict(), test=dict())
img_norm_cfg = dict(mean=[0.5931, 0.4690, 0.4229],
std=[0.2471, 0.2214, 0.2157])
optimizer = dict(lr=0.005, momentum=0.9, weight_decay=5e-4)
scheduler = dict(milestones=[20,50], gamma=0.2)
data = dict(batch_size=256,
data_loader_workers=4,
sampler=None,
pin_memory=True)
resize = dict(height=128, width=128)
checkpoint = dict(snapshot_name="MobileNet3.pth.tar",
experiment_path='./logs')
loss = dict(loss_type='amsoftmax',
amsoftmax=dict(m=0.5,
s=1,
margin_type='cross_entropy',
label_smooth=False,
smoothing=0.1,
ratio=[1,1],
gamma=0),
soft_triple=dict(cN=2, K=10, s=1, tau=.2, m=0.35))
epochs = dict(start_epoch=0, max_epoch=71)
model= dict(model_type='Mobilenet3',
model_size = 'large',
width_mult = 0.75,
pretrained=True,
embeding_dim=1024,
imagenet_weights='./pretrained/mobilenetv3-small-0.75-86c972c3.pth')
aug = dict(type_aug=None,
alpha=0.5,
beta=0.5,
aug_prob=0.7)
curves = dict(det_curve='det_curve_0.png',
roc_curve='roc_curve_0.png')
dropout = dict(prob_dropout=0.1,
classifier=0.35,
type='bernoulli',
mu=0.5,
sigma=0.3)
data_parallel = dict(use_parallel=False,
parallel_params=dict(device_ids=[0,1], output_device=0))
RSC = dict(use_rsc=False,
p=0.333,
b=0.333)
test_dataset = dict(type='LCC_FASD')
conv_cd = dict(theta=0)