-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
executable file
·364 lines (320 loc) · 15.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
'''MIT License
Copyright (C) 2020 Prokofiev Kirill, Intel Corporation
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.'''
import json
import logging
import os
import os.path as osp
import sys
from importlib import import_module
import numpy as np
import torch
import collections
import collections.abc
for type_name in collections.abc.__all__:
setattr(collections, type_name, getattr(collections.abc, type_name))
from attrdict import AttrDict as adict
from torch.utils.data import DataLoader
from datasets import get_datasets
from losses import (AMSoftmaxLoss, AngleSimpleLinear, SoftTripleLinear,
SoftTripleLoss)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def check_file_exist(filename, msg_tmpl='file "{}" does not exist'):
if not osp.isfile(filename):
raise FileNotFoundError(msg_tmpl.format(filename))
def read_py_config(filename):
filename = osp.abspath(osp.expanduser(filename))
check_file_exist(filename)
assert filename.endswith('.py')
module_name = osp.basename(filename)[:-3]
if '.' in module_name:
raise ValueError('Dots are not allowed in config file path.')
config_dir = osp.dirname(filename)
sys.path.insert(0, config_dir)
mod = import_module(module_name)
sys.path.pop(0)
cfg_dict = adict({
name: value
for name, value in mod.__dict__.items()
if not name.startswith('__')
})
return cfg_dict
def save_checkpoint(state, filename="my_model.pth.tar"):
print('==> saving checkpoint')
torch.save(state, filename)
def load_checkpoint(checkpoint_path, net, map_location, optimizer=None, load_optimizer=False, strict=True):
''' load a checkpoint of the given model. If model is using for training with imagenet weights provided by
this project, then delete some wights due to mismatching architectures'''
print("\n==> Loading checkpoint")
checkpoint = torch.load(checkpoint_path, map_location=map_location)
if 'state_dict' in checkpoint:
state_dict = checkpoint['state_dict']
if not (isinstance(net, torch.nn.DataParallel)):
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] if k.startswith('module.') else k # remove `module.`
new_state_dict[name] = v
state_dict = new_state_dict
unloaded = net.load_state_dict(state_dict, strict=strict)
missing_keys, unexpected_keys = (', '.join(i) for i in unloaded)
else:
unloaded = net.load_state_dict(checkpoint, strict=strict)
missing_keys, unexpected_keys = (', '.join(i) for i in unloaded)
print("Checkpoint loaded")
if missing_keys or unexpected_keys:
logging.warning(f'THE FOLLOWING KEYS HAVE NOT BEEN LOADED:\n\nmissing keys: {missing_keys}\
\n\nunexpected keys: {unexpected_keys}\n')
print('proceed traning ...')
if load_optimizer:
optimizer.load_state_dict(checkpoint['optimizer'])
if 'epoch' in checkpoint:
return checkpoint['epoch']
def precision(output, target, s=None):
"""Compute the precision"""
if s:
output = output*s
if isinstance(output, tuple):
output = output[0].data
accuracy = (output.argmax(dim=1) == target).float().mean().item()
return accuracy*100
def mixup_target(input_, target, config, device):
# compute mix-up augmentation
input_, target_a, target_b, lam = mixup_data(input_, target, config.aug.alpha,
config.aug.beta, device, config.aug.aug_prob)
return input_, target_a, target_b, lam
def mixup_data(x, y, alpha=1.0, beta=1.0, device='cuda:0', aug_prob=1.):
'''Returns mixed inputs, pairs of targets, and lambda'''
r = np.random.rand(1)
if (alpha > 0) and (beta > 0) and (r <= aug_prob):
lam = np.random.beta(alpha, beta)
batch_size = x.size()[0]
index = torch.randperm(batch_size).to(device)
mixed_x = lam * x + (1 - lam) * x[index, :]
y_a, y_b = y, y[index]
return mixed_x, y_a, y_b, lam
return x, y, y, 0
def cutmix(input_, target, config, device='cuda:0'):
r = np.random.rand(1)
if (config.aug.beta > 0) and (config.aug.alpha > 0) and (r <= config.aug.aug_prob):
# generate mixed sample
lam = np.random.beta(config.aug.alpha > 0, config.aug.beta > 0)
rand_index = torch.randperm(input_.size()[0]).to(device)
bbx1, bby1, bbx2, bby2 = rand_bbox(input_.size(), lam)
input_[:, :, bbx1:bbx2, bby1:bby2] = input_[rand_index, :, bbx1:bbx2, bby1:bby2]
# adjust lambda to exactly match pixel ratio
lam = 1 - ((bbx2 - bbx1) * (bby2 - bby1) / (input_.size()[-1] * input_.size()[-2]))
target_a = target
target_b = target[rand_index]
return input_, target_a, target_b, lam
return input_, target, target, 0
def rand_bbox(size, lam):
w = size[2]
h = size[3]
cut_rat = np.sqrt(1. - lam)
cut_w = np.int(w * cut_rat)
cut_h = np.int(h * cut_rat)
# uniform
cx = np.random.randint(w)
cy = np.random.randint(h)
bbx1 = np.clip(cx - cut_w // 2, 0, w)
bby1 = np.clip(cy - cut_h // 2, 0, h)
bbx2 = np.clip(cx + cut_w // 2, 0, w)
bby2 = np.clip(cy + cut_h // 2, 0, h)
return bbx1, bby1, bbx2, bby2
def freeze_layers(model, open_layers):
for name, module in model.named_children():
if name in open_layers:
module.train()
for p in module.parameters():
p.requires_grad = True
else:
module.eval()
for p in module.parameters():
p.requires_grad = False
def make_dataset(config: dict, train_transform: object = None, val_transform: object = None, mode='train'):
''' make train, val or test datasets '''
datasets = get_datasets(config)
train_data = datasets[config.dataset + '_train'](transform=train_transform)
val_data = datasets[config.dataset + '_val'](transform=val_transform)
if config.test_dataset.type == 'LCC_FASD' and config.dataset == 'celeba_spoof':
test_data = datasets['LCC_FASD_combined'](transform=val_transform)
else:
test_data = datasets[config.test_dataset.type + '_test'](transform=val_transform)
if mode == 'train':
return train_data, val_data, test_data
else:
assert mode == 'eval'
return test_data
def collate_fn(batch):
batch = list(filter(lambda x: x is not None, batch))
return torch.utils.data.dataloader.default_collate(batch)
def make_loader(train, val, test, config, sampler=None):
''' make data loader from given train and val dataset
train, val -> train loader, val loader'''
if sampler:
shuffle = False
else:
shuffle = True
train_loader = DataLoader(dataset=train, batch_size=config.data.batch_size,
shuffle=shuffle, pin_memory=config.data.pin_memory,
num_workers=config.data.data_loader_workers, sampler=sampler,
collate_fn=collate_fn)
val_loader = DataLoader(dataset=val, batch_size=config.data.batch_size,
shuffle=True, pin_memory=config.data.pin_memory,
num_workers=config.data.data_loader_workers,
collate_fn=collate_fn)
test_loader = DataLoader(dataset=test, batch_size=config.data.batch_size,
shuffle=True, pin_memory=config.data.pin_memory,
num_workers=config.data.data_loader_workers,
collate_fn=collate_fn)
return train_loader, val_loader, test_loader
def build_model(config, device, strict=True, mode='train'):
''' build model and change layers depends on loss type'''
parameters = dict(width_mult=config.model.width_mult,
prob_dropout=config.dropout.prob_dropout,
type_dropout=config.dropout.type,
mu=config.dropout.mu,
sigma=config.dropout.sigma,
embeding_dim=config.model.embeding_dim,
prob_dropout_linear = config.dropout.classifier,
theta=config.conv_cd.theta,
multi_heads = (config.multi_task_learning, config.multi_spoof))
if config.model.model_type == 'Mobilenet2':
from models import mobilenetv2
model = mobilenetv2(**parameters)
elif config.model.model_type == 'Mobilenet3':
if config.model.model_size == 'large':
from models import mobilenetv3_large
model = mobilenetv3_large(config.activation, **parameters)
elif config.model.model_size == 'small':
from models import mobilenetv3_small
model = mobilenetv3_small(config.activation, **parameters)
else:
raise "Model type not implemented"
#Custom spoofer in model definition
if (config.loss.loss_type == 'amsoftmax') and (config.loss.amsoftmax.margin_type != 'cross_entropy'):
model.scaling = config.loss.amsoftmax.s
model.spoofer[3] = AngleSimpleLinear(config.model.embeding_dim, 2)
elif config.loss.loss_type == 'soft_triple':
model.scaling = config.loss.soft_triple.s
model.spoofer[3] = SoftTripleLinear(config.model.embeding_dim, 2, num_proxies=config.loss.soft_triple.K)
elif config.model.model_type=='ResNet': #NEW
from models import ResNet50#, ResNet18
assert (config.model.model_size=='50')# or (config.model.model_size=='18')
#if config.model.model_size=='50':
model = ResNet50(**parameters)
#elif config.model.model_size=='18':
# model = ResNet18(**parameters)
elif config.model.model_type=='Micronet':
from models import micronet_constructor
model = micronet_constructor(config.model.model_size, config.resize, activation=config.activation, **parameters)
elif config.model.model_type=='ShuffleNetV2':
from models import get_ShuffleNetV2_model
model = get_ShuffleNetV2_model(activation=config.activation, **parameters)
elif config.model.model_type=='ShuffleNetV2_default':
from models import ShuffleNetV2_default
model = ShuffleNetV2_default(**parameters)
elif config.model.model_type=='MobileNetV3_large_default':
from models import MobileNetV3_large_default
model = MobileNetV3_large_default(**parameters)
elif config.model.model_type=='ResNet18_default':
from models import ResNet18_default
model = ResNet18_default(**parameters)
else:
raise "Model not implemented"
# Not using custom spoofer with dropout
if config.model.model_type != 'Mobilenet3':
if (config.loss.loss_type == 'amsoftmax') and (config.loss.amsoftmax.margin_type != 'cross_entropy'):
model.spoofer = AngleSimpleLinear(config.model.embeding_dim, 2)
elif config.loss.loss_type == 'soft_triple':
model.spoofer = SoftTripleLinear(config.model.embeding_dim, 2,
num_proxies=config.loss.soft_triple.K)
if config.model.pretrained and mode == "train":
checkpoint_path = config.model.imagenet_weights
load_checkpoint(checkpoint_path, model, strict=strict, map_location=device)
elif mode == 'convert':
model.forward = model.forward_to_onnx
return model
def build_criterion(config, device, task='main'):
if task == 'main':
if config.loss.loss_type == 'amsoftmax':
criterion = AMSoftmaxLoss(**config.loss.amsoftmax, device=device)
elif config.loss.loss_type == 'soft_triple':
criterion = SoftTripleLoss(**config.loss.soft_triple)
else:
assert task == 'rest'
criterion = AMSoftmaxLoss(margin_type='cross_entropy',
label_smooth=config.loss.amsoftmax.label_smooth,
smoothing=config.loss.amsoftmax.smoothing,
gamma=config.loss.amsoftmax.gamma,
device=device)
return criterion
class Transform():
""" class to make diferent transform depends on the label """
def __init__(self, train_spoof=None, train_real=None, val = None):
self.train_spoof = train_spoof
self.train_real = train_real
self.val_transform = val
if not all((self.train_spoof, self.train_real)):
self.train = self.train_spoof or self.train_real
self.transforms_quantity = 1
else:
self.transforms_quantity = 2
def __call__(self, label, img):
if self.val_transform:
return self.val_transform(image=img)
if self.transforms_quantity == 1:
return self.train(image=img)
if label:
return self.train_real(image=img) #CHANGING FOR CVPR2023 CODE
else:
assert label == 0
return self.train_spoof(image=img)
def make_weights(config):
'''load weights for imbalance dataset to list'''
if config.dataset != 'celeba-spoof':
raise NotImplementedError
with open(os.path.join(config.data.data_root, 'metas/intra_test/items_train.json') , 'r') as f:
dataset = json.load(f)
n = len(dataset)
weights = [0 for i in range(n)]
keys = list(map(int, list(dataset.keys())))
keys.sort()
assert len(keys) == n
for key in keys:
label = int(dataset[str(key)]['labels'][43])
if label:
weights[int(key)] = 0.1
else:
assert label == 0
weights[int(key)] = 0.2
assert len(weights) == n
return n, weights