| 
 | 1 | +//===-- Implementation header for exp2m1f ------------------------*- C++-*-===//  | 
 | 2 | +//  | 
 | 3 | +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.  | 
 | 4 | +// See https://llvm.org/LICENSE.txt for license information.  | 
 | 5 | +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception  | 
 | 6 | +//  | 
 | 7 | +//===----------------------------------------------------------------------===//  | 
 | 8 | + | 
 | 9 | +#ifndef LLVM_LIBC_SRC___SUPPORT_MATH_EXP2M1F_H  | 
 | 10 | +#define LLVM_LIBC_SRC___SUPPORT_MATH_EXP2M1F_H  | 
 | 11 | + | 
 | 12 | +#include "exp10f_utils.h"  | 
 | 13 | +#include "src/__support/FPUtil/FEnvImpl.h"  | 
 | 14 | +#include "src/__support/FPUtil/FPBits.h"  | 
 | 15 | +#include "src/__support/FPUtil/PolyEval.h"  | 
 | 16 | +#include "src/__support/FPUtil/except_value_utils.h"  | 
 | 17 | +#include "src/__support/FPUtil/multiply_add.h"  | 
 | 18 | +#include "src/__support/FPUtil/rounding_mode.h"  | 
 | 19 | +#include "src/__support/common.h"  | 
 | 20 | +#include "src/__support/libc_errno.h"  | 
 | 21 | +#include "src/__support/macros/config.h"  | 
 | 22 | +#include "src/__support/macros/optimization.h"  | 
 | 23 | +#include "src/__support/macros/properties/cpu_features.h"  | 
 | 24 | + | 
 | 25 | +namespace LIBC_NAMESPACE_DECL {  | 
 | 26 | + | 
 | 27 | +namespace math {  | 
 | 28 | + | 
 | 29 | +LIBC_INLINE static constexpr float exp2m1f(float x) {  | 
 | 30 | +#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS  | 
 | 31 | +  constexpr size_t N_EXCEPTS_LO = 8;  | 
 | 32 | + | 
 | 33 | +  constexpr fputil::ExceptValues<float, N_EXCEPTS_LO> EXP2M1F_EXCEPTS_LO = {{  | 
 | 34 | +      // (input, RZ output, RU offset, RD offset, RN offset)  | 
 | 35 | +      // x = 0x1.36dc8ep-36, exp2m1f(x) = 0x1.aef212p-37 (RZ)  | 
 | 36 | +      {0x2d9b'6e47U, 0x2d57'7909U, 1U, 0U, 0U},  | 
 | 37 | +      // x = 0x1.224936p-19, exp2m1f(x) = 0x1.926c0ep-20 (RZ)  | 
 | 38 | +      {0x3611'249bU, 0x35c9'3607U, 1U, 0U, 1U},  | 
 | 39 | +      // x = 0x1.d16d2p-20, exp2m1f(x) = 0x1.429becp-20 (RZ)  | 
 | 40 | +      {0x35e8'b690U, 0x35a1'4df6U, 1U, 0U, 1U},  | 
 | 41 | +      // x = 0x1.17949ep-14, exp2m1f(x) = 0x1.8397p-15 (RZ)  | 
 | 42 | +      {0x388b'ca4fU, 0x3841'cb80U, 1U, 0U, 1U},  | 
 | 43 | +      // x = -0x1.9c3e1ep-38, exp2m1f(x) = -0x1.1dbeacp-38 (RZ)  | 
 | 44 | +      {0xacce'1f0fU, 0xac8e'df56U, 0U, 1U, 0U},  | 
 | 45 | +      // x = -0x1.4d89b4p-32, exp2m1f(x) = -0x1.ce61b6p-33 (RZ)  | 
 | 46 | +      {0xafa6'c4daU, 0xaf67'30dbU, 0U, 1U, 1U},  | 
 | 47 | +      // x = -0x1.a6eac4p-10, exp2m1f(x) = -0x1.24fadap-10 (RZ)  | 
 | 48 | +      {0xbad3'7562U, 0xba92'7d6dU, 0U, 1U, 1U},  | 
 | 49 | +      // x = -0x1.e7526ep-6, exp2m1f(x) = -0x1.4e53dep-6 (RZ)  | 
 | 50 | +      {0xbcf3'a937U, 0xbca7'29efU, 0U, 1U, 1U},  | 
 | 51 | +  }};  | 
 | 52 | + | 
 | 53 | +  constexpr size_t N_EXCEPTS_HI = 3;  | 
 | 54 | + | 
 | 55 | +  constexpr fputil::ExceptValues<float, N_EXCEPTS_HI> EXP2M1F_EXCEPTS_HI = {{  | 
 | 56 | +      // (input, RZ output, RU offset, RD offset, RN offset)  | 
 | 57 | +      // x = 0x1.16a972p-1, exp2m1f(x) = 0x1.d545b2p-2 (RZ)  | 
 | 58 | +      {0x3f0b'54b9U, 0x3eea'a2d9U, 1U, 0U, 0U},  | 
 | 59 | +      // x = -0x1.9f12acp-5, exp2m1f(x) = -0x1.1ab68cp-5 (RZ)  | 
 | 60 | +      {0xbd4f'8956U, 0xbd0d'5b46U, 0U, 1U, 0U},  | 
 | 61 | +      // x = -0x1.de7b9cp-5, exp2m1f(x) = -0x1.4508f4p-5 (RZ)  | 
 | 62 | +      {0xbd6f'3dceU, 0xbd22'847aU, 0U, 1U, 1U},  | 
 | 63 | +  }};  | 
 | 64 | +#endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS  | 
 | 65 | + | 
 | 66 | +  using FPBits = fputil::FPBits<float>;  | 
 | 67 | +  FPBits xbits(x);  | 
 | 68 | + | 
 | 69 | +  uint32_t x_u = xbits.uintval();  | 
 | 70 | +  uint32_t x_abs = x_u & 0x7fff'ffffU;  | 
 | 71 | + | 
 | 72 | +  // When |x| >= 128, or x is nan, or |x| <= 2^-5  | 
 | 73 | +  if (LIBC_UNLIKELY(x_abs >= 0x4300'0000U || x_abs <= 0x3d00'0000U)) {  | 
 | 74 | +    // |x| <= 2^-5  | 
 | 75 | +    if (x_abs <= 0x3d00'0000U) {  | 
 | 76 | +#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS  | 
 | 77 | +      if (auto r = EXP2M1F_EXCEPTS_LO.lookup(x_u); LIBC_UNLIKELY(r.has_value()))  | 
 | 78 | +        return r.value();  | 
 | 79 | +#endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS  | 
 | 80 | + | 
 | 81 | +      // Minimax polynomial generated by Sollya with:  | 
 | 82 | +      // > display = hexadecimal;  | 
 | 83 | +      // > fpminimax((2^x - 1)/x, 5, [|D...|], [-2^-5, 2^-5]);  | 
 | 84 | +      constexpr double COEFFS[] = {  | 
 | 85 | +          0x1.62e42fefa39f3p-1, 0x1.ebfbdff82c57bp-3,  0x1.c6b08d6f2d7aap-5,  | 
 | 86 | +          0x1.3b2ab6fc92f5dp-7, 0x1.5d897cfe27125p-10, 0x1.43090e61e6af1p-13};  | 
 | 87 | +      double xd = x;  | 
 | 88 | +      double xsq = xd * xd;  | 
 | 89 | +      double c0 = fputil::multiply_add(xd, COEFFS[1], COEFFS[0]);  | 
 | 90 | +      double c1 = fputil::multiply_add(xd, COEFFS[3], COEFFS[2]);  | 
 | 91 | +      double c2 = fputil::multiply_add(xd, COEFFS[5], COEFFS[4]);  | 
 | 92 | +      double p = fputil::polyeval(xsq, c0, c1, c2);  | 
 | 93 | +      return static_cast<float>(p * xd);  | 
 | 94 | +    }  | 
 | 95 | + | 
 | 96 | +    // x >= 128, or x is nan  | 
 | 97 | +    if (xbits.is_pos()) {  | 
 | 98 | +      if (xbits.is_finite()) {  | 
 | 99 | +        int rounding = fputil::quick_get_round();  | 
 | 100 | +        if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO)  | 
 | 101 | +          return FPBits::max_normal().get_val();  | 
 | 102 | + | 
 | 103 | +        fputil::set_errno_if_required(ERANGE);  | 
 | 104 | +        fputil::raise_except_if_required(FE_OVERFLOW);  | 
 | 105 | +      }  | 
 | 106 | + | 
 | 107 | +      // x >= 128 and 2^x - 1 rounds to +inf, or x is +inf or nan  | 
 | 108 | +      return x + FPBits::inf().get_val();  | 
 | 109 | +    }  | 
 | 110 | +  }  | 
 | 111 | + | 
 | 112 | +  if (LIBC_UNLIKELY(x <= -25.0f)) {  | 
 | 113 | +    // 2^(-inf) - 1 = -1  | 
 | 114 | +    if (xbits.is_inf())  | 
 | 115 | +      return -1.0f;  | 
 | 116 | +    // 2^nan - 1 = nan  | 
 | 117 | +    if (xbits.is_nan())  | 
 | 118 | +      return x;  | 
 | 119 | + | 
 | 120 | +    int rounding = fputil::quick_get_round();  | 
 | 121 | +    if (rounding == FE_UPWARD || rounding == FE_TOWARDZERO)  | 
 | 122 | +      return -0x1.ffff'fep-1f; // -1.0f + 0x1.0p-24f  | 
 | 123 | +
  | 
 | 124 | +    fputil::set_errno_if_required(ERANGE);  | 
 | 125 | +    fputil::raise_except_if_required(FE_UNDERFLOW);  | 
 | 126 | +    return -1.0f;  | 
 | 127 | +  }  | 
 | 128 | +
  | 
 | 129 | +#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS  | 
 | 130 | +  if (auto r = EXP2M1F_EXCEPTS_HI.lookup(x_u); LIBC_UNLIKELY(r.has_value()))  | 
 | 131 | +    return r.value();  | 
 | 132 | +#endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS  | 
 | 133 | +
  | 
 | 134 | +  // For -25 < x < 128, to compute 2^x, we perform the following range  | 
 | 135 | +  // reduction: find hi, mid, lo such that:  | 
 | 136 | +  //   x = hi + mid + lo, in which:  | 
 | 137 | +  //     hi is an integer,  | 
 | 138 | +  //     0 <= mid * 2^5 < 32 is an integer,  | 
 | 139 | +  //     -2^(-6) <= lo <= 2^(-6).  | 
 | 140 | +  // In particular,  | 
 | 141 | +  //   hi + mid = round(x * 2^5) * 2^(-5).  | 
 | 142 | +  // Then,  | 
 | 143 | +  //   2^x = 2^(hi + mid + lo) = 2^hi * 2^mid * 2^lo.  | 
 | 144 | +  // 2^mid is stored in the lookup table of 32 elements.  | 
 | 145 | +  // 2^lo is computed using a degree-4 minimax polynomial generated by Sollya.  | 
 | 146 | +  // We perform 2^hi * 2^mid by simply add hi to the exponent field of 2^mid.  | 
 | 147 | +
  | 
 | 148 | +  // kf = (hi + mid) * 2^5 = round(x * 2^5)  | 
 | 149 | +  float kf = 0;  | 
 | 150 | +  int k = 0;  | 
 | 151 | +#ifdef LIBC_TARGET_CPU_HAS_NEAREST_INT  | 
 | 152 | +  kf = fputil::nearest_integer(x * 32.0f);  | 
 | 153 | +  k = static_cast<int>(kf);  | 
 | 154 | +#else  | 
 | 155 | +  constexpr float HALF[2] = {0.5f, -0.5f};  | 
 | 156 | +  k = static_cast<int>(fputil::multiply_add(x, 32.0f, HALF[x < 0.0f]));  | 
 | 157 | +  kf = static_cast<float>(k);  | 
 | 158 | +#endif // LIBC_TARGET_CPU_HAS_NEAREST_INT  | 
 | 159 | +
  | 
 | 160 | +  // lo = x - (hi + mid) = x - kf * 2^(-5)  | 
 | 161 | +  double lo = fputil::multiply_add(-0x1.0p-5f, kf, x);  | 
 | 162 | +
  | 
 | 163 | +  // hi = floor(kf * 2^(-4))  | 
 | 164 | +  // exp2_hi = shift hi to the exponent field of double precision.  | 
 | 165 | +  int64_t exp2_hi =  | 
 | 166 | +      static_cast<int64_t>(static_cast<uint64_t>(k >> ExpBase::MID_BITS)  | 
 | 167 | +                           << fputil::FPBits<double>::FRACTION_LEN);  | 
 | 168 | +  // mh = 2^hi * 2^mid  | 
 | 169 | +  // mh_bits = bit field of mh  | 
 | 170 | +  int64_t mh_bits = ExpBase::EXP_2_MID[k & ExpBase::MID_MASK] + exp2_hi;  | 
 | 171 | +  double mh = fputil::FPBits<double>(static_cast<uint64_t>(mh_bits)).get_val();  | 
 | 172 | +
  | 
 | 173 | +  // Degree-4 polynomial approximating (2^x - 1)/x generated by Sollya with:  | 
 | 174 | +  // > display = hexadecimal;  | 
 | 175 | +  // > fpminimax((2^x - 1)/x, 4, [|D...|], [-2^-6, 2^-6]);  | 
 | 176 | +  constexpr double COEFFS[5] = {0x1.62e42fefa39efp-1, 0x1.ebfbdff8131c4p-3,  | 
 | 177 | +                                0x1.c6b08d7061695p-5, 0x1.3b2b1bee74b2ap-7,  | 
 | 178 | +                                0x1.5d88091198529p-10};  | 
 | 179 | +  double lo_sq = lo * lo;  | 
 | 180 | +  double c1 = fputil::multiply_add(lo, COEFFS[0], 1.0);  | 
 | 181 | +  double c2 = fputil::multiply_add(lo, COEFFS[2], COEFFS[1]);  | 
 | 182 | +  double c3 = fputil::multiply_add(lo, COEFFS[4], COEFFS[3]);  | 
 | 183 | +  double exp2_lo = fputil::polyeval(lo_sq, c1, c2, c3);  | 
 | 184 | +  // 2^x - 1 = 2^(hi + mid + lo) - 1  | 
 | 185 | +  //         = 2^(hi + mid) * 2^lo - 1  | 
 | 186 | +  //         ~ mh * (1 + lo * P(lo)) - 1  | 
 | 187 | +  //         = mh * exp2_lo - 1  | 
 | 188 | +  return static_cast<float>(fputil::multiply_add(exp2_lo, mh, -1.0));  | 
 | 189 | +}  | 
 | 190 | +
  | 
 | 191 | +} // namespace math  | 
 | 192 | +
  | 
 | 193 | +} // namespace LIBC_NAMESPACE_DECL  | 
 | 194 | +
  | 
 | 195 | +#endif // LLVM_LIBC_SRC___SUPPORT_MATH_EXP2M1F_H  | 
0 commit comments